Stem rust in Western Siberia – race composition and effective resistance genes
https://doi.org/10.18699/VJ20.608
Abstract
Stem rust in recent years has acquired an epiphytotic character, causing significant economic damage for wheat production in some parts of Western Siberia. On the basis of a race composition study of the stem rust populations collected in 2016–2017 in Omsk region and Altai Krai, 13 pathotypes in Omsk population and 10 in Altai population were identified. The race differentiation of stem rust using a tester set of 20 North American Sr genes differentiator lines was carried out. The genes of stem rust pathotypes of the Omsk population are avirulent only to the resistance gene Sr31, Altai isolates are avirulent not only to Sr31, but also to Sr24, and Sr30. A low frequency of virulence (10–25 %) of the Omsk population pathotypes was found for Sr11, Sr24,Sr30, and for Altai population – Sr7b,Sr9b,Sr11,SrTmp, which are ineffective in Omsk region. Field evaluations of resistance to stem rust were made in 2016–2018 in Omsk region in the varieties and spring wheat lines from three different sources. The first set included 58 lines and spring bread wheat varieties with identified Sr genes – the so-called trap nursery (ISRTN – International Stem Rust Trap Nursery). The second set included spring wheat lines from the Arsenal collection, that were previously selected according to a complex of economically valuable traits, with genes for resistance to stem rust, including genes introgressed into the common wheat genome from wild cereal species. The third set included spring bread wheat varieties created in the Omsk State Agrarian University within the framework of a shuttle breeding program, with a synthetic wheat with the Ae. tauschiigenome in their pedigrees. It was established that the resistance genes Sr31, Sr40,Sr2 complexare effective against stem rust in the conditions of Western Siberia. The following sources with effective Srgenes were selected: (Benno)/6*LMPG-6 DK42, Seri 82, Cham 10, Bacanora (Sr31), RL 6087 Dyck (Sr40), Amigo (Sr24,1RS-Am), Siouxland (Sr24,Sr31), Roughrider (Sr6, Sr36), Sisson (Sr6,Sr31,Sr36), and Fleming (Sr6,Sr24,Sr36,1RS-Am), Pavon 76 (Sr2 complex) from the ISRTN nursery; No. 1 BC 1F2 (96 × 113) × 145 × 113 (Sr2,Sr36,Sr44), No. 14а F 3(96 × 113) × 145 (Sr36,Sr44), No. 19 BC 2F3(96 × 113) × 113 (Sr2, Sr36, Sr44), and No. 20 F 3 (96 × 113) × 145 (Sr2,Sr36,Sr40, Sr44) from the Arsenal collection; and the Omsk State Agrarian University varieties Element 22 (Sr31,Sr35), Lutescens 27-12, Lutescens 87-12 (Sr23,Sr36), Lutescens 70-13, and Lutescens 87-13 (Sr23,Sr31,Sr36). These sources are recommended for inclusion in the breeding process for developing stem rust resistant varieties in the region.
About the Authors
V. P. ShamaninRussian Federation
Omsk
I. V. Pototskaya
Russian Federation
Omsk
S. S. Shepelev
Russian Federation
Omsk
V. E. Pozherukova
Russian Federation
Omsk
E. A. Salina
Russian Federation
Novosibirsk
E. S. Skolotneva
Russian Federation
Novosibirsk
D. Hodson
Ethiopia
Addis Ababa
M. Hovmøller
Denmark
Slagelse
M. Patpour
Denmark
Slagelse
A. I. Morgounov
Turkey
Ankara
References
1. Ablova I.B., Bespalova L.A., Kolesnikov F.A., Nabokov G.D., Kovtunenko V.Ya., Filobok V.A., Davoyan R.O., Khudokormova Zh.N., Mokhova L.M., Levchenko Yu.G., Tarkhov A.S.Principles and methods of wheat breeding on tolerance to diseases in KRIA named after P.P. Lukiyanenko. Zernovoe Khozjaistvo Rossii = Grain Eco nomy of Russia. 2016;5:32-36. (in Russian)
2. Baranova O.A., Lapochkina I.F., Anisimova A.V., Gajnullin N.R., Iordanskaya I.V., Makarova I.Yu. Identification of Srgenes in new common wheat sources of resistance to stem rust race Ug99 using molecular markers. Russ. J. Genet.: Appl. Res. 2016;6(3): 344-350.
3. Gomez-Becerra H., Morgounov A., Abugalieva A. Evaluation of yield grain stability, reliability and cultivar recommendation in spring wheat (Triticum aestivum) from Kazakhstan and Siberia. Central Eur. J. Agriculture. 2006;6:649-660.
4. Jin Y., Szabo L.J., Pretorius Z.A., Singh R.P., Ward R., Fetch T., Jr. Detection of virulence to resistance gene Sr24within race TTKS of Puccinia graminis f. sp. tritici. Plant Dis. 2008;92: 923-926.
5. Kerber E.R., Dyck P.L. Resistance to stem and leaf rust in Aegilops squarrosaand transfer of a gene for stem rust resistance to hexaploid wheat. In: Ramanujam S. (Ed.). Proceeding of the 5th International Wheat Genetics Symposium. New Delhi: Ind. Soc. of Genetics and Plant Breeding, Ind. Agric. Res. Institute, 1979;358-364.
6. Koyshybaev M., Shamanin V.P., Morgunov A.I. Screening of Wheat for Resistance to Major Diseases. Ankara: FAO-SEK, 2014. (in Russian)
7. Lapochkina I.F., Baranova O.A., Shamanin V.P., Volkova G.V., Gainullin N.R., Anisimova A.V., Galinger D.N., Lazareva E.N., Gladkova E.V., Vaganova O.F. The development of the initial material of spring common wheat for breeding for resistance to stem rust (Puccinia graminisPers. f. sp. tritici), including the Ug99 race, in Russia. Russ. J. Genet.: Appl. Res. 2017;7(3): 308-317. DOI 10.1134/S207905971703008X.
8. Leonova I.N., Orlovskaya O.A., Röder M.S., Nesterov M.A., Budashkina E.B. Molecular diversity of common wheat introgression lines (T. aestivum/T. timopheevii). Russ. J. Genet.: Appl. Res. 2015; 5(3):191-197. DOI 10.1134/S2079059715030090.
9. Mains E.B., Jackson H.S. Physiologic specialization in the leaf rust of wheat, Puccinia triticinaErikss. Phytopathology. 1926;16(2): 89-120.
10. McIntosh R.A., Dubcovsky J., Rogers W.J., Morris C., Xia X.C. Catalogue of gene symbols for wheat: 2017 Supplement. Available at: http://shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2017.pdf
11. McIntosh R.A., Yamayaki Y., Dubcovsky J., Rogers W.J., Morris C., Ap pels R., Xia X. Catalogue of Gene Symbols for Wheat: 2013–2014 Supplement. Available at: http://www.shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2013.pdf
12. Olson E.L., Rous M.N., Pumphrey M.O., Bowden R.L., Gill B.S., Poland J.A. Introgression of stem rust resistance genes SrTA10187and SrTA10171from Aegilops tauschiito wheat. Theor. Appl. Genet. 2013;126:2477-2484. DOI 10.1007/s00122-013-2148-z.
13. Peterson R.F., Campbell A.B., Hannah A.E. A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. Can. J. Res. (Sect. C). 1948;26:496-500.
14. Roelfs A.P., Martens J.W. An international system of nomenclature for Puccinia graminis f. sp. tritici. Phytopathology. 1988;78: 526-533.
15. Sanin S.S. Problems of phytosanitary of grain production. In: Protection of Cereal Crops Against Diseases, Pests, and Weeds: Progress and Problems: Proc. of the Int. sci. and pract. conf. Bolshye Vya zemy, 5–9 Dec. 2016. Moscow, 2016;4-15. (in Russian)
16. Schneider A., Molnár I., Molnár-Láng M. Utilisation of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat. Euphytica. 2008;163:1-19. DOI 10.1007/s10681-007-9624-y.
17. Shamanin V.P., Morgunov A.I., Petukhovskiy S.L., Likhenko I.E., Levshunov M.A., Salina E.A., Pototskaya I.V., Trushchenko A. Ju. Breeding of spring bread wheat for resistance to stem rust in West Siberia. Omsk: FGOU VPO OmGAU Publ., 2015. (in Russian)
18. Shamanin V.P., Pototskaya I.V., Klevakina M.V. Assessment of the Siberian collection of spring wheat on resistance to stem rust in the southern forest-steppe of Western Siberia. Vestnik Kazansko go GAU = The Herald of Kazan State Agrarian University. 2016a;2(40):55-59. (in Russian)
19. Shamanin V., Salina Е., Wanyera R., Zelenskiy Yu., Morgounov A. Genetic diversity of spring wheat from Kazakhstan and Russia for resistance to stem rust Ug99. Euphytica. 2016b;12:287-296. DOI 10.1007/s10681-016-1769-0.
20. Singh R.P., Hodson D.P., Huerta-Espino J., Jin Y., Njau P., Wanyera R., Herrera-Foessel S.A., Ward R.W. Will stem rust destroy the world’s wheat crop? Adv. Agron. 2008;98:271-309. DOI 10.1016/S0065-2113(08)00205-8.
21. Singh R.P., Hodson D.P., Jin Y., Lagudah E.S., Ayliffe M.A., Bhavani S., Rouse M.N., Pretorius Z.A., Szabo L.J., Huerta-Espino J., Basnet B.R., Lan C., Hovmøller M.S. Emergence and spread of new races of wheat stem rust fungus: Continued threat to food security and prospects of genetic control. Phytopathology. 2015;105:872-884.
22. Singh R.P., Huerta-Espino J., Bhavani S., Herrera-Foessel S.A., Singh D., Singh P.K., Velu G., Mason R.E., Jin Y., Njau P., Crossa J. Race non-specific resistance to rust diseases in CIMMYT spring wheats: breeding and advances. Euphytica. 2011;179: 175-186. DOI 10.1007/s10681-010-0322-9.
23. Skolotneva E.S., Bukatich E.Ju., Bojko N.I., Piskarev V.V., Salina E.A. Screening of an international stem rust nursery trap for Ug99in the Priobie forest-steppe in 2017. In: Gene Pool and Plant Breeding: Proc. IV Int. sci. and pract. conf., 4–6 April 2018. Novosibirsk, 2018;313-318. (in Russian)
24. Skolotneva E.S., Kel’bin V.N., Morgunov A.I., Bojko N.I., Shamanin V.P., Salina E.A. Races composition of the Novosibirsk population of Puccinia graminisf. sp. tritici. Mikologiya i Fito patologiya = Mycology and Phytopathology. 2020;54(1): 49-58. (in Russian)
25. Yu G., Champouret N., Steuernagel B., Olivera P.D., Simmons J., Williams C., Johnson R., Moscou M.J., Hernández-Pinzón I., Green P., Sela H., Millet E., Jones J.D.G., Ward E.R., Steffenson B.J., Wulff B.B.H. Discovery and characterization of two new stem rust resistance genes in Aegilops sharonensis. Theor. Appl. Genet. 2017;130:1207-1222.