Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Разнообразие и распространение метилотрофных дрожжей, используемых в генной инженерии

https://doi.org/10.18699/VJ20.602

Полный текст:

Аннотация

Метилотрофные дрожжи используются в качестве платформы для экспрессии гетерологичных белков с 1980-х гг. Они имеют высокий уровень продукции и позволяют получить белки эукариот с приемлемым  уровнем гликозилирования. Первая система для экспрессии рекомбинантного белка на основе Pichia pastoris была разработана на основе штамма, выделенного из сокотечения деревьев на юго-западе США. Система распространялась бесплатно в научных целях и применяется во всем мире. В ходе классификации метилотрофных  дрожжей по молекулярно-биологическим маркерам штаммы, используемые для получения рекомбинантного  белка, были реклассифицированы как Komagataella phaffii. Они находятся в свободном доступе согласно патентному законодательству, однако распространялись на договорной основе. Это делает неопределенным их статус для коммерческого использования и, соответственно, стимулирует поиск альтернативных штаммов для экспрессии рекомбинантного белка. Были адаптированы штаммы других видов метилотрофных дрожжей, среди  которых преобладают представители рода Ogataea. Несмотря на филогенетическую удаленность представите-лей рода Ogataeaи Komagataella, во всех случаях оказалось возможным использовать классические векторы и  промоторы для экспрессии рекомбинантного белка. Существуют системы экспрессии на основе других штаммов  рода Komagataella, а также рода Candida. Потенциал этих микроорганизмов для генной инженерии далеко не исчерпан. Перспективно как усовершенствование имеющихся систем экспрессии, так и создание новых на основе  штаммов, выделенных из природных источников. Исторически до 2009 г. в качестве систем экспрессии использовались штаммы, выделенные на юго-западе США. В настоящее время начали развиваться системы экспрессии  на основе штаммов, полученных в Таиланде. Поскольку эта группа микроорганизмов широко представлена по  всему миру как в природной, так и в городской среде, можно ожидать появления систем экспрессии рекомбинантных белков, созданных на основе штаммов, выделенных и в других регионах планеты.

Об авторах

А. С. Розанов
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия
Новосибирск


Е. Г. Першина
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия
Новосибирск


Н. В. Богачева
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия
Новосибирск


В. Шляхтун
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия
Новосибирск


А. А. Сычев
ООО «Инновационный центр «Бирюч-НТ»
Россия

Белгородская область



С. Е. Пельтек
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия
Новосибирск


Список литературы

1. Abu M.L., Nooh H.M., Oslan S.N., Salleh A.B. Optimization of physical conditions for the production of thermostable T1 lipase in Pichia guilliermondiistrain SO using response surface methodology. BMC Biotechnol. 2017;17:78. DOI 10.1186/s12896-017-0397-7.

2. Ahmad M., Hirz M., Pichler H., Schwab H. Protein expression in Pi chia pastoris: recent achievements and perspectives for heterologous protein production. Appl. Microbiol. Biotechnol. 2014;98:5301-5317. DOI 10.1007/s00253-014-5732-5.

3. Anthony C. Bacterial oxidation of methane and methanol. Adv. Micro bial Physiol. 1986;27:113-210. DOI 10.1016/S0065-2911(08)60305-7.

4. Boonchoo K., Puseenam A., Kocharin K., Tanapongpipat S., Roongsawang N. Sucrose-inducible heterologous expression of phytase in high cell density cultivation of the thermotolerant methylotrophic yeast Ogataea thermomethanolica. FEMS Microbiol. Lett. 2019; 366(5). DOI 10.1093/femsle/fnz052.

5. Bowles J.M., Lachance M.-A. Patterns of variation in the yeast florae of exudates in an oak community. Can. J. Bot. 2007;61(12):2984-2995. DOI 10.1139/b83-335.

6. Charoenrat T., Antimanon S., Kocharin K., Tanapongpipat S., Roongsawang N. High cell density process for constitutive production of a recombinant phytase in thermotolerant methylotrophic yeast Oga­ taea thermomethanolicausing table sugar as carbon source. Appl. Biochem. Biotechnol. 2016;180:1618-1634. DOI 10.1007/s12010-016-2191-8.

7. Cook M.W., Thygesen H.V. Safety evaluation of a hexose oxidase expressed in Hansenula polymorpha. Food Chem. Toxicol. 2003;41: 523-529. DOI 10.1016/S0278-6915(02)00280-6.

8. Coton E., Coton M., Levert D., Casaregola S., Sohier D. Yeast ecology in French cider and black olive natural fermentations. Int. J. Food Microbiol. 2006;108:130-135. DOI 10.1016/j.ijfoodmicro.2005.10.016.

9. Cregg J.M., Barringer K.J., Hessler A.Y., Madden K.R. Pichia pasto­ risas a host system for transformations. Mol. Cell. Biol. 1985;(12): 3376-3385. DOI 10.1128/mcb.5.12.3376.

10. Cregg J.M., Vedvick T.S., Raschke W.C. Recent advances in the expression of foreign genes inPichia pastoris. Biotechnology (NY). 1993;11:905-910. DOI 10.1038/nbt0893-905.

11. Darby R.A.J., Cartwright S.P., Dilworth M.V., Bill R.M. Which yeast species shall I choose? Saccharomyces cerevisiaeversus Pichia pas­ toris(Review). In: Bill R.M. (Ed.). Recombinant Protein Production in Yeast: Methods and Protocols. Humana Press, 2012;11-23. DOI 10.1007/978-1-61779-770-5_2.

12. Degelmann A., Müller F., Sieber H., Jenzelewski V., Suckow M., Strasser A.W.M., Gellissen G. Strain and process development for the production of human cytokines in Hansenula polymorpha. FEMS Yeast Res. 2002;2:349-361. DOI 10.1016/S1567-1356(02)00096-X.

13. Dlauchy D., Tornai-Lehoczki J., Fülöp L., Péter G. Pichia(Komaga­ taella) pseudopastorissp. nov., a new yeast species from Hungary. Antonie van Leeuwenhoek. 2003;83:327-332. DOI 10.1023/A:1023318829389.

14. dos Reis K.C., Arrizon J., Amaya-Delgado L., Gschaedler A., Schwan R.F., Silva C.F. Volatile compounds flavoring obtained from Brazilian and Mexican spirit wastes by yeasts. World J. Microbiol. Biotechnol. 2018;34(152). DOI 10.1007/s11274-018-2535-3.

15. Faparusi S.I. Microorganisms from oil palm tree (Elaeis guineensis) tap holes. J. Food Sci. 1974;39(4):755-757. DOI 10.1111/j.1365-2621.1974.tb17972.x.

16. Gellissen G. (Ed.). Production of Recombinant Proteins: Novel Microbial and Eukaryotic Expression Systems. John Wiley & Sons, 2005.

17. Glushakova A.M., Maximova I.A., Kachalkin A.V., Yurkov A.M. Oga­ taea cecidiorumsp. nov., a methanol-assimilating yeast isolated from galls on willow leaves. Antonie van Leeuwenhoek. 2010;98(1): 93-101. DOI 10.1007/s10482-010-9433-5.

18. Handumrongkul C., Ma D.P., Silva J.L. Cloning and expression of Can­ dida guilliermondiixylose reductase gene (xyl1) in Pichia pasto­ ris. Appl. Microbiol. Biotechnol. 1998;49:399-404. DOI 10.1007/s002530051189.

19. Harnpicharnchai P., Promdonkoy P., Sae-Tang K., Roongsawang N., Tanapongpipat S. Use of the glyceraldehyde-3-phosphate dehydrogenase promoter from a thermotolerant yeast, Pichia thermo me­ thanolica, for heterologous gene expression, especially at elevated temperature. Ann. Microbiol. 2014;64:1457-1462. DOI 10.1007/s13213-013-0765-z.

20. Hartner F.S., Glieder A. Regulation of methanol utilisation pathway genes in yeasts. Microb. Cell Fact. 2006;5(39). DOI 10.1186/1475-2859-5-39.

21. Hasslacher M., Schall M., Hayn M., Bona R., Rumbold K., Lückl J., Griengl H., Kohlwein S.D., Schwab H. High-level intracellular expression of hydroxynitrile lyase from the tropical rubber tree Hevea brasiliensisin microbial hosts. Protein Expr. Purif. 1997;11:61-71. DOI 10.1006/prep.1997.0765.

22. Heo J.H., Won H.S., Kang H.A., Rhee S.K., Chung B.H. Purification of recombinant human epidermal growth factor secreted from the methylotrophic yeast Hansenula polymorpha. Protein Expr. Purif. 2002;24(1):117-122. DOI 10.1006/prep.2001.1527.

23. Kang H.A., Kang W., Hong W.K., Kim M.W., Kim J.Y., Sohn J.-H., Choi E.S., Choe K.B., Rhee S.K. Development of expression systems for the production of recombinant human serum albumin using the MOX promoter in Hansenula polymorphaDL-1. Biotechnol. Bioeng. 2001;76(2):175-185. DOI 10.1002/bit.1157.

24. . Kang H.A., Sohn J.-H., Choi E.-S., Chung B.H., Yu M.-H., Rhee S.K. Glycosylation of human α1-antitrypsin in Saccharomyces cerevi­ siaeand methylotrophic yeasts. Yeast. 1998;14(4):371-381. DOI 10.1002/(SICI)1097-0061(19980315)14:4<371::AID-YEA231>3.0.CO;2-1.

25. Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 2013;30(4):772-780. DOI 10.1093/molbev/mst010.

26. Kim M.W., Rhee S.K., Kim J.Y., Shimma Y.I., Chiba Y., Jigami Y., Kang H.A. Characterization of N-linked oligosaccharides assembled on secretory recombinant glucose oxidase and cell wall mannoproteins from the methylotrophic yeast Hansenula polymorpha. Glycobiology. 2004;14(3):243-251. DOI 10.1093/glycob/cwh030.

27. Komeda T., Sakai Y., Kato N., Kondo K. Construction of proteasedeficient Candida boidinii strains useful for recombinant protein production: cloning and disruption of proteinase A gene (PEP4) and proteinase B gene… Biosci. Biotechnol. Biochem. 2002;66(3):628-631. DOI 10.1271/bbb.66.628.

28. Kozhakhmetov S., Tynybayeva I., Baikhanova D., Saduakhasova S., Saduakhasova G., Saduakhasova A., Nurgozhin T., Zhumadilov Z. Metagenomic analysis of koumiss in Kazakhstan. Cent. Asian J. Glob. Health. 2016;3(Suppl.). DOI 10.5195/cajgh.2014.163.

29. Kurtzman C.P. Description of Komagataella phaffiisp. nov. and the transfer of Pichia pseudopastoris to the methylotrophic yeast genus Komagataella. Int. J. Syst. Evol. Microbiol. 2005;55:973-976. DOI 10.1099/ijs.0.63491-0.

30. Kurtzman C.P. PichiaE.C. Hansen emend. Kurtzman. In: Kurtzman C.P., Fell J.W. (Eds.). The Yeasts: A Taxonomical Study. Elsevier, Bv, 1998;273-352. DOI 10.1016/b978-044481312-1/50046-0.

31. Kurtzman C.P. Biotechnological strains of Komagataella(Pichia) pas­ torisare Komagataella phaffiias determined from multigene sequence analysis. J. Ind. Microbiol. Biotechnol. 2009;36:1435-1438. DOI 10.1007/s10295-009-0638-4.

32. Kurtzman C.P. KomagataellaY. Yamada, Matsuda, Maeda & Mikata (1995). In: Kurtzman C.P., Fell J.W., Boekhout T. (Eds.). The Yeasts: A Taxonomical Study. 5th edn. 2011а;491-495. DOI 10.1016/B978-0-444-52149-1.00037-9.

33. Kurtzman C.P. OgataeaY. Yamada, K. Maeda & Mikata (1994). In: Kurtzman C.P., Fell J.W., Boekhout T. (Eds.). The Yeasts: A Taxonomical Study. 5th edn. 2011b;645-671. DOI 10.1016/B978-0-444-52149-1.00053-7.

34. Kurtzman C.P., Fell J.W., Boekhout T., Robert V. Methods for isolation, phenotypic characterization and maintenance of yeasts. In: Kurtzman C.P., Fell J.W., Boekhout T. (Eds.). The Yeasts: A Taxonomical Study. 5th edn. 2011;87-110. DOI 10.1016/B978-0-444-52149-1.00007-0.

35. Kurtzman C.P., Robnett C.J. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek. 1998;73:331-371. DOI 10.1023/A:1001761008817.

36. Kurtzman C.P., Robnett C.J., Basehoar-Powers E. Phylogenetic relationships among species of Pichia,Issatchenkiaand Williopsisdetermined from multigene phylogenetic analysis and the proposal of Barnettozymagen. nov., Lindneragen. nov. and Wickerhamomyces gen. nov. FEMS Yeast Res. 2008;8(6):939-954. DOI 10.1111/j.1567-1364.2008.00419.x.

37. Kutty S.N., Philip R. Marine yeasts – a review. Yeast. 2008;25:465-483. DOI 10.1002/yea.1599.

38. Lachance M.A., Metcalf B.J., Starmer W.T. Yeasts from exudates of Quercus, Ulmus, Populus, and Pseudotsuga: new isolations and elucidation of some factors affecting ecological specificity. Microb. Ecol. 1982;8:191-198. DOI 10.1007/BF02010452.

39. Limtong S., Kaewwichian R., Groenewald M. Ogataea kanchanaburi­ ensissp. nov. and Ogataea wangdongensissp. nov., two novel methylotrophic yeast species from phylloplane in Thailand. Antonie van Leeuwenhoek. 2013;103:551-558. DOI 10.1007/s10482-012-9837-5.

40. Limtong S., Srisuk N., Yongmanitchai W., Yurimoto H., Nakase T., Kato N. Pichia thermomethanolicasp. nov., a novel thermotolerant, methylotrophic yeast isolated in Thailand. Int. J. Syst. Evol. Microbiol. 2005;55:2225-2229. DOI 10.1099/ijs.0.63712-0.

41. MacDonald R.C., Fall R. Detection of substantial emissions of methanol from plants to the atmosphere. Atmos. Environ. 1993;27(11):1709-1713. DOI 10.1016/0960-1686(93)90233-O.

42. Mayer A.F., Hellmuth K., Schlieker H., Lopez-Ulibarri R., Oertel S., Dahlems U., Strasser A.W.M., Van Loon A.P.G.M. An expression system matures: a highly efficient and cost-effective process for phytase production by recombinant strains of Hansenula polymorpha. Biotechnol. Bioeng. 1999;63(3):373-381. DOI 10.1002/(SICI)1097-0290(19990505)63:3<373::AID-BIT14>3.0.CO;2-T.

43. Mishra S., Baranwal R. Yeast genetics and biotechnological applications. In: Satyanarayana T., Kunze G. (Eds). Yeast Biotechnology: Diversity and Applications. Springer, 2009;323-355. DOI 10.1007/978-1-4020-8292-4_16.

44. Mu Z., Yang X., Yuan H. Detection and identification of wild yeast in koumiss. Food Microbiol. 2012;31:301-308. DOI 10.1016/j.fm.2012.04.004.

45. Nakagawa T., Miyaji T., Yurimoto H., Sakai Y., Kato N., Tomizuka N. A methylotrophic pathway participates in pectin utilization by Candida boidinii. Appl. Environ. Microbiol. 2000;66(10):4253-4257. DOI 10.1128/AEM.66.10.4253-4257.2000.

46. Nakagawa T., Yamada K., Fujimura S., Ito T., Miyaji T., Tomizuka N. Pectin utilization by the methylotrophic yeast Pichia methanolica. Microbiology. 2005;151(6):2047-2052. DOI 10.1099/mic.0.27895-0.

47. Naumov G.I., Naumova E.S., Tyurin O.V., Kozlov D.G. Komagataella kurtzmaniisp. nov., a new sibling species of Komagataella(Pichia) pastorisbased on multigene sequence analysis. Antonie van Leeuwenhoek. 2013;104:339-347. DOI 10.1007/s10482-013-9956-7.

48. Negruta O., Csutak O., Stoica I., Rusu E., Vassu T. Methylotrophic yeasts: diversity and methanol metabolism. Rom. Biotechnol. Lett. 2010;15(4):5369-5375.

49. Nishikawa M., Hagishita T., Yurimoto H., Kato N., Sakai Y., Hatanaka T. Primary structure and expression of peroxisomal acetylspermidine oxidase in the methylotrophic yeast Candida boidinii. FEBS Lett. 2000;476:150-154. DOI 10.1016/S0014-5793(00)01708-7.

50. Ogata K., Nishikawa H., Ohsugi M. A yeast capable of utilizing methanol. Agr. Biol. Chem. 1969;33(10):1519-1520. DOI 10.1080/ 00021369.1969.10859497.

51. Oslan S.N., Salleh A.B., Rahman R.N.Z.R.A., Basri M., Chor A.L.T. Locally isolated yeasts from Malaysia: identification, phylogenetic study and characterization. Acta Biochim. Pol. 2012;59(2):225-229. DOI 10.18388/abp.2012_2142.

52. Oslan S.N., Salleh A.B., Rahman R.N.Z.R.A., Leow T.C., Sukamat H., Basri M. A newly isolated yeast as an expression host for recombinant lipase. Cell. Mol. Biol. Lett. 2015;20(2):279-293. DOI 10.1515/cmble-2015-0015.

53. Park B.S., Vladimir A., Kim C.H., Rhee S.K., Kang H.A. Secretory production of Zymomonas mobilislevansucrase by the methylotrophic yeast Hansenula polymorpha. Enzyme Microb. Technol. 2004; 34:132-138. DOI 10.1016/j.enzmictec.2003.09.005.

54. Phithakrotchanakoon C., Puseenam A., Phaonakrop N., Roytrakul S., Tanapongpipat S., Roongsawang N. Hac1 function revealed by the protein expression profile of a OtHAC1mutant of thermotolerant methylotrophic yeast Ogataea thermomethanolica. Mol. Biol. Rep. 2018a;45:1311-1319. DOI 10.1007/s11033-018-4287-4.

55. Phithakrotchanakoon C., Puseenam A., Wongwisansri S., Eurwilaichitr L., Ingsriswang S., Tanapongpipat S., Roongsawang N. CRISPR-Cas9 enabled targeted mutagenesis in the thermotolerant methylotrophic yeast Ogataea thermomethanolica. FEMS Microbiol. Lett. 2018b;365(11). DOI 10.1093/femsle/fny105.

56. Promdonkoy P., Tirasophon W., Roongsawang N., Eurwilaichitr L., Tanapongpipat S. Methanol-inducible promoter of thermotolerant methylotrophic yeast Ogataea thermomethanolicaBCC16875 potential for production of heterologous protein at high temperatures. Curr. Microbiol. 2014;69:143-148. DOI 10.1007/s00284-014-0568-x.

57. Puseenam A., Kocharin K., Tanapongpipat S., Eurwilaichitr L., Ingsriswang S., Roongsawang N. A novel sucrose-based expression system for heterologous proteins expression in thermotolerant methylotrophic yeast Ogataea thermomethanolica. FEMS Microbiol. Lett. 2018;365(20). DOI 10.1093/femsle/fny238.

58. Raymond C.K., Bukowski T., Holderman S.D., Ching A.F.T., Vanaja E., Stamm M.R. Development of the methylotrophic yeast Pichia methanolicafor the expression of the 65 kilodalton isoform of human glutamate decarboxylase. Yeast. 1998;14:11-23. DOI 10.1002/(SICI)1097-0061(19980115)14:1<11::AID-YEA196>3.0.CO;2-S.

59. Roongsawang N., Puseenam A., Kitikhun S., Sae-Tang K., Harnpicharnchai P., Ohashi T., Fujiyama K., Tirasophon W., Tanapongpipat S. A novel potential signal peptide sequence and overexpression of ER-resident chaperones enhance heterologous protein secretion in thermotolerant methylotrophic yeast Ogataea thermomethanolica. Appl. Biochem. Biotechnol. 2016;178:710-724. DOI 10.1007/s12010-015-1904-8.

60. Sakai Y., Rogi T., Takeuchi R., Kato N., Tani Y. Expression of Saccha­ romycesadenylate kinase gene in Candida boidiniiunder the regulation of its alcohol oxidase promoter. Appl. Microbiol. Biotechnol. 1995;42:860-864. DOI 10.1007/BF00191182.

61. Seo H.S., Park J.S., Han K.Y., Bae K.D., Ahn S.J., Kang H.A., Lee J. Analysis and characterization of hepatitis B vaccine particles synthesized from Hansenula polymorpha. Vaccine. 2008;26:4138-4144. DOI 10.1016/j.vaccine.2008.05.070.

62. Sibirny A.A. Pichia methanolica(Pichia pinusMH4 ). In: Wolf K. (Ed.). Nonconventional Yeasts in Biotechnology. Springer, 1996;277-291. DOI 10.1007/978-3-642-79856-6_8.

63. Sohn M.J., Oh D.B., Kim E.J., Cheon S.A., Kwon O., Kim J.Y., Lee S.Y., Kang H.A.H. HpYPS1and HpYPS7encode functional aspartyl proteases localized at the cell surface in the thermotolerant methylotrophic yeast Hansenula polymorpha. Yeast. 2012;29:1-16. DOI 10.1002/yea.1912.

64. Spencer D.M., Spencer J.F.T., Fengler E., de Figueroa L.I. Yeasts associated with algarrobo trees (Prosopis spp.) in northwest Argentina: a preliminary report. J. Ind. Microbiol. 1995;14:472-474. DOI 10.1007/BF01573960.

65. Spencer D.M., Spencer J.F.T., de Figueroa L.I., Garro O., Fengler E. Yeasts associated with pods and exudates of algarrobo trees (Pro­ sopisspp.) and species of columnar cacti in northwest Argentina. Appl. Microbiol. Biotechnol. 1996;44(6):736-739. DOI 10.1007/BF00178611.

66. Spencer J.F.T., Spencer D.M. Ecology: where yeasts live. In: Spencer J.F.T., Spencer D.M. (Eds.). Yeasts in Natural and Artificial Habitats. Springer, 1997;33-58. DOI 10.1007/978-3-662-03370-8_4.

67. Syromyatnikov M.Y., Kiryanova S.V., Popov V.N. Development and validation of a TaqMan RT-PCR method for identification of mayonnaise spoilage yeast Pichia kudriavzevii. AMB Express. 2018;8(186). DOI 10.1186/s13568-018-0716-y.

68. Tanapongpipat S., Promdonkoy P., Watanabe T., Tirasophon W., Roongsawang N., Chiba Y., Eurwilaichitr L. Heterologous protein expression in Pichia thermomethanolicaBCC16875, a thermotole rant methylotrophic yeast and characterization of N-linked glycosy lation in secreted protein. FEMS Microbiol. Lett. 2012;334:127-134. DOI 10.1111/j.1574-6968.2012.02628.x.

69. Trifinopoulos J., Nguyen L.T., von Haeseler A., Minh B.Q. W-IQTREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016;(44):W232-W235. DOI 10.1093/nar/gkw256.

70. Trotsenko Yu.A., Torgonskaya M.L. Methylotrophic Yeasts. Moscow: TR-Print Publ., 2011. (in Russian)

71. Trotsenko Yu.A., Torgonskaya M.L. Aerobic methylotrophs – promising objects of modern biotechnology. J. Siberian Federal University. Biology. 2012;5(3):243-279. (in Russian)

72. van der Klei I.J., Yurimoto H., Sakai Y., Veenhuis M. The significance of peroxisomes in methanol metabolism in methylotrophic yeast. Biochim. Biophys. Acta. 2006;1763(12):1453-1462. DOI 10.1016/j.bbamcr.2006.07.016.

73. Wegner E.H. Biochemical Conversions by Yeast Fermentation at High Cell Densites. U.S. Pat. 4,414,329. Oct. 29, 1981.

74. Wegner G.H., Harder W. Methylotrophic Yeasts – 1986. In: van Verseveld H.W., Duine J.A. (Eds.). Microbial Growth on C 1 Compounds: Proc. of the 5th Int. Symp. Dordrecht: Springer Netherlands, 1987;131-138. DOI 10.1007/978-94-009-3539-6_17.

75. Weydemann U., Keup P., Piontek M., Strasser A.W.M., Schweden J., Gellissen G., Janowicz Z.A. High-level secretion of hirudin by Hansenula polymorpha – authentic processing of three different preprohirudins. Appl. Microbiol. Biotechnol. 1995;4:377-385. DOI 10.1007/BF00169932

76. Yamada Y., Maeda K., Mikata K. The phylogenetic relationships of the hat-shaped ascospore-forming, nitrate-assimilating Pichiaspecies, formerly classified in the genus HansenulaSydow et Sydow, based on the partial sequences of 18S and 26S ribosomal RNAs (Saccharomycetaceae): the proposals of three new genera, Ogataea, Kuraishia, and Nakazawaea. Biosci. Biotechnol. Biochem. 1994; 58(7):1245-1257. DOI 10.1271/bbb.58.1245.

77. Yamada Y., Matsuda M., Maeda K., Mikata K. The phylogenetic relationships of methanol-assimilating yeasts based on the partial sequences of 18S and 26S ribosomal RNAs: the proposal of Ko­ ma gataellagen. nov. (Saccharomycetaceae). Biosci. Biotechnol. Bio chem. 1995;59(3):439-444. DOI 10.1271/bbb.59.439.

78. Yurimoto H., Hasegawa T., Sakai Y., Kato. N. Characterization and high-level production of D-amino acid oxidase in Candida boidinii. Biosci. Biotechnol. Biochem. 2001;65(3):627-633. DOI 10.1271/bbb.65.627.

79. Yurimoto H., Kato N., Sakai Y. Assimilation, dissimilation, and detoxification of formaldehyde, a central metabolic intermediate of methylotrophic metabolism. Chem. Rec. 2005;5:367-375. DOI 10.1002/tcr.20056.

80. Yurimoto H., Komeda T., Lim C.R., Nakagawa T., Kondo K., Kato N., Sakai Y. Regulation and evaluation of five methanol-inducible promoters in the methylotrophic yeast Candida boidinii. Bio chim. Biophys. Acta. 2000;1493:56-63. DOI 10.1016/S0167-4781(00)00157-3.

81. Yurimoto H., Sakai Y. Methanol-inducible gene expression and heterologous protein production in the methylotrophic yeast Candida boidinii. Biotechnol. Appl. Biochem. 2009;53:85-92. DOI 10.1042/ba20090030.

82. Yurimoto H., Yamane M., Kikuchi Y., Matsui H., Kato N., Sakai Y. The pro-peptide of Streptomyces mobaraensistransglutaminase functions in cisand in transto mediate efficient secretion of active enzyme from methylotrophic yeasts. Biosci. Biotechnol. Biochem. 2004;68(10):2058-2069. DOI 10.1271/bbb.68.2058.

83. Zhang T., Gong F., Chi Z., Liu G., Chi Z., Sheng J., Li J., Wang X. Cloning and characterization of the inulinase gene from a marine yeast Pichia guilliermondiiand its expression in Pichia pastoris. Antonie van Leeuwenhoek. 2009;95:13-22. DOI 10.1007/s10482-008-9281-8.


Просмотров: 54


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-0462 (Print)
ISSN 2500-3259 (Online)