Fecal microbiome change in patients with ulcerative colitis after fecal microbiota transplantation
https://doi.org/10.18699/VJ20.610
Abstract
Intestinal human microbiota is a dynamic system that is under the pressures of its host organism and external factors. Microbiota disruption caused by these factors can lead to severe diseases including inflammatory and oncological diseases of the gastrointestinal tract. One of the possible approaches in managing the intestinal microbiota is fecal microbiota transplantation (FT) – transfer of the microbiota from the stool of a healthy donor to the intestinal tract of a recipient patient. Currently, this procedure is recognized as an efficacious method to normalize the intestinal microbiota mainly in inflammatory diseases of the gastrointestinal tract. In Russia, pilot studies of the effectiveness of FT in patients with ulcerative colitis have been conducted for several years, and these studies were started in Novosibirsk. The aim of this study was to assess the change of intestinal microbiome in 20 patients with ulcerative colitis after a single FT procedure. The main method is a comparative analysis of 16S ribosomal RNA sequence libraries constructed using fecal samples obtained from patients with ulcerative colitis before and after FT and sequenced on the Illumina MiSeq platform. The obtained results showed that FT led to an increase in average biodiversity in samples after FT compared to samples before FT; however, the difference was not significant. In the samples studied, the proportion of Firmicutes sequences, the major gastrointestinal microbiota of healthy people, was decreased (~32 % vs. >70 %), while the proportion of Proteobacteria sequences was increased (>9 % vs. <5 %). In some samples collected before FT, sequences of pathogenic Firmicutes and Proteobacteria were detected, including Acinetobacter spp., Enterococcusspp., Klebsiella pneumoniae, Proteus mirabilis, Staphylococcus aureus, Stenotrophomonas maltophylia, Streptococcusspp. In most cases, the proportion of such sequences after FT substantially decreased in appropriate samples. The exception was the Clostridiumdifficilesequences, which accounted for <0.5 % of the sequences in samples from almost half of the patients and after FT, the share of such C. difficilesequences was significantly reduced only in samples from three patients. It should be noted that the proportion of Lactobacillusspp. increased ten-fold and their species composition significantly expanded. According to the obtained results, a preliminary conclusion can be made that even a single FT procedure can lead to an increase in the biodiversity of the gastrointestinal microbiota in patients and to the optimization of the taxonomic composition of the microbiota.
About the Authors
A. Y. TikunovRussian Federation
Novosibirsk
V. V. Morozov
Russian Federation
Novosibirsk
A. N. Shvalov
Russian Federation
Koltsovo, Novosibirsk region
A. V. Bardasheva
Russian Federation
Novosibirsk
E. V. Shrayner
Russian Federation
Novosibirsk
O. A. Maksimova
Russian Federation
Novosibirsk
I. O. Voloshina
Russian Federation
Novosibirsk
V. V. Morozova
Russian Federation
Novosibirsk
V. V. Vlasov
Russian Federation
Novosibirsk
N. V. Tikunova
Russian Federation
Novosibirsk
References
1. Aas J., Gessert C.E., Bakken J.S. Recurrent Clostridium difficilecolitis: case series involving 18 patients treated with donor stool administered via a nasogastric tube. Clin. Infect. Dis. 2003;36(5):580585.
2. Angelberger S., Reinisch W., Makristathis A., Lichtenberger C., De jaco C., Papay P., Novacek G., Trauner M., Loy A., Berry D. Temporal bacterial community dynamics vary among ulcerative colitis patients after fecal microbiota transplantation. Am. J. Gastroenterol. 2013;108(10):1620-1630. DOI 10.1038/ajg.2013.257.
3. Bajer L., Kverka M., Kostovcik M., Macinga P., Dvorak J., Stehliko va Z., Brezina J., Wohl P., Spicak J., Drastich P. Distinct gut microbiota profiles in patients with primary sclerosing cholangitis and ulcerative colitis. World J. Gastroenterol. 2017;23(25):4548-4558. DOI 10.3748/wjg.v23.i25.4548.
4. Belizário J.E., Faintuch J., GarayMalpartida M. Gut microbiome dys biosis and immunometabolism: new frontiers for treatment of metabolic diseases. Mediators Inflamm. 2018;2018:1-12. DOI 10.1155/2018/2037838.
5. Broecker F., Klumpp J., Moelling K. Longterm microbiota and virome in a Zürich patient after fecal transplantation against Clostridium difficile infection. Ann. N.Y. Acad. Sci. 2016;1372(1):29-41. DOI 10.1111/nyas.13100.
6. Cammarota G., Masucci L., Ianiro G., Bibbò S., Dinoi G., Costamagna G., Sanguinetti M., Gasbarrini A. Randomised clinical trial: faecal microbiota transplantation by colonoscopy vs. vancomycin for the treatment of recurrent Clostridium difficile infection. Aliment. Pharmacol. Ther. 2015;41(9):835-843. DOI 10.1111/apt.13144.
7. Chakravorty S., Helb D., Burday M., Connell N., Alland D. A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. J. Microbiol. Methods. 2007;69(2):330-339.
8. Chehoud C., Dryga A., Hwang Y., NagySzakal D., Hollister E.B., Luna R.A., Versalovic J., Kellermayer R., Bushman F.D. Transfer of viral communities between human individuals during fecal micro biota transplantation. MBio. 2016;7(2):e00322. DOI 10.1128/mBio.00322-16.
9. Cheng Y.W., Fischer M. The present status of fecal microbiota trans plantation and its value in the elderly. Curr. Treat. Options Gastroen terol. 2017;15(3):349-362. DOI 10.1007/s11938-017-0143-1.
10. Debast S.B., Bauer M.P., Kuijper E.J. European Society of Clinical Microbiology and Infectious Diseases: update of the treatment guidance document for Clostridium difficileinfection. Clin. Microbiol. Infect. 2014;20(Suppl.2):1-26. DOI 10.1111/1469-0691.12418.
11. Deshpande A., Pasupuleti V., Pant C., Rolston D.D., Sferra T.J. Diagnostic testing for Clostridium difficileinfection in patients with inflammatory bowel disease. J. Clin. Gastroenterol. 2013;47(8):737-738. DOI 10.1097/MCG.0b013e318295d4ec.
12. Donaldson G.P., Lee S.M., Mazmanian S.K. Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol. 2016;14(1):20-32. DOI 10.1038/nrmicro3552.
13. Drekonja D., Reich J., Gezahegn S., Greer N., Shaukat A., MacDonald R., Rutks I., Wilt T.J. Fecal microbiota transplantation for Clostridium difficile infection: a systematic review. Ann. Intern. Med. 2015;162(9):630-638. DOI 10.7326/M14-2693.
14. Duncan S.H., Louis P., Flint H.J. Cultivable bacterial diversity from the human colon. Lett. Appl. Microbiol. 2007;44(4):343-350.
15. Eiseman B., Silen W., Bascom G.S., Kauvar A.J. Fecal enema as an adjunct in the treatment of pseudomembranous enterocolitis. Surgery. 1958;44(5):854-859.
16. Flint H.J., Scott K.P., Duncan S.H., Louis P., Forano E. Microbial de gradation of complex carbohydrates in the gut. Gut Microbes. 2012; 3(4):289-306.
17. Fujimura K.E., Slusher N.A., Cabana M.D., Lynch S.V. Role of the gut microbiota in defining human health. Expert Rev. Anti. Infect. Ther. 2010;8(4):435-454. DOI 10.1586/eri.10.14.
18. Goldenberg S.D., Batra R., Beales I., DigbyBell J.L., Irving P.M., Kel lingray L., Narbad A., FranslemElumogo N. Comparison of different strategies for providing fecal microbiota transplantation to treat patients with recurrent Clostridium difficileinfection in two English hospitals: a review. Infect. Dis. Ther. 2018;7(1):71-86. DOI 10.1007/s40121-018-0189-y.
19. Gradel K.O., Nielsen H.L., Schønheyder H.C., Ejlertsen T., Kristen sen B., Nielsen H. Increased short and longterm risk of inflam matory bowel disease after salmonella or campylobacter gastroente ritis. Gastroenterology. 2009;137(2):495-501. DOI 10.1053/j.gastro.2009.04.001.
20. Kang D.W., Adams J.B., Gregory A.C., Borody T., Chittick L., Fasa no A., Khoruts A., Geis E., Maldonado J., McDonoughMeans S., Pollard E.L., Roux S., Sadowsky M.J., Lipson K.S., Sullivan M.B., Caporaso J.G., KrajmalnikBrown R. Microbiota transfer therapy alters gut ecosystem and improves gastrointestinal and autism symp toms: an openlabel study. Microbiome. 2017;5(1):10. DOI 10.1186/s40168-016-0225-7.
21. Kellermayer R., NagySzakal D., Harris R.A., Luna R.A., Pitashny M., Schady D., Mir S.A., Lopez M.E., Gilger M.A., Belmont J., Hollister E.B., Versalovic J. Serial fecal microbiota transplantation alters mucosal gene expression in pediatric ulcerative colitis. Am. J. Gas troenterol. 2015;110(4):604-606. DOI 10.1038/ajg.2015.19.
22. Khoruts A., Dicksved J., Jansson J.K., Sadowsky M.J. Changes in the composition of the human fecal microbiome after bacteriotherapy for recurrent Clostridium difficileassociated diarrhea. J. Clin. Gastroen terol. 2010;44(5):354-360. DOI 10.1097/MCG.0b013e3181c87e02.
23. Khoruts A., Sadowsky M.J. Understanding the mechanisms of faecal microbiota transplantation. Nat. Rev. Gastroenterol. Hepatol. 2016; 13(9):508-516. DOI 10.1038/nrgastro.2016.98.
24. Ley R.E. Prevotellain the gut: choose carefully. Nat. Rev. Gastroen terol. Hepatol. 2016;13(2):69-70. DOI 10.1038/nrgastro.2016.4.
25. Lozupone C.A., Stombaugh J.I., Gordon J.I., Jansson J.K., Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489(7415):220-230. DOI 10.1038/nature11550.
26. Machiels K., Joossens M., Sabino J., De Preter V., Arijs I., Eeckhaut V., Ballet V., Claes K., Van Immerseel F., Verbeke K., Ferrante M., Verhaegen J., Rutgeerts P., Vermeire S. A decrease of the butyratepro ducing species Roseburia hominisand Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut. 2014;63(8): 1275-1283. DOI 10.1136/gutjnl-2013-304833.
27. Manichanh C., Borruel N., Casellas F., Guarner F. The gut microbiota in IBD. Nat. Rev. Gastroenterol. Hepatol. 2012;9(10):599-608. DOI 10.1038/nrgastro.2012.152.
28. Moayyedi P., Surette M.G., Kim P.T., Libertucci J., Wolfe M., Onis chi C., Armstrong D., Marshall J.K., Kassam Z., Reinisch W., Lee C.H. Fecal microbiota transplantation induces remission in patients with active ulcerative colitis in a randomized controlled trial. Gastroenterology. 2015;149(1):102-109. DOI 10.1053/j.gastro.2015.04.001.
29. O’Hara A.M., Shanahan F. The gut flora as a forgotten organ. EMBO Rep. 2006;7(7):688-693.
30. Ohkusa T., Okayasu I., Ogihara T., Morita K., Ogawa M., Sato N. Induction of experimental ulcerative colitis by Fusobacterium varium isolated from colonic mucosa of patients with ulcerative colitis. Gut. 2003;52(1):79-83.
31. Paramsothy S., Kamm M.A., Kaakoush N.O., Walsh A.J., van den Bo gaerde J., Samuel D., Leong R.W.L., Connor S., Ng W., Paramsothy R., Xuan W., Lin E., Mitchell H.M., Borody T.J. Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: a randomised placebo-controlled trial. Lancet. 2017;389(10075): 1218-1228. DOI 10.1016/S0140-6736(17)30182-30184.
32. Pigneur B., Sokol H. Fecal microbiota transplantation in inflamma tory bowel disease: the quest for the holy grail. Mucosal Immunol. 2016;9(6):1360-1365. DOI 10.1038/mi.2016.67.
33. Qin J., Li R., Raes J., Arumugam M., Burgdorf K.S., Manichanh C., Nielsen T., Pons N., Levenez F., Yamada T., Mende D.R., Li J., Xu J., Li S., Li D., Cao J., Wang B., Liang H., Zheng H., Xie Y., Tap J., Lepage P., Bertalan M., Batto J.M., Hansen T., Le Paslier D., Linneberg A., Nielsen H.B., Pelletier E., Renault P., Sicheritz-Ponten T., Turner K., Zhu H., Yu C., Li S., Jian M., Zhou Y., Li Y., Zhang X., Li S., Qin N., Yang H., Wang J., Brunak S., Doré J., Guarner F., Kristiansen K., Pedersen O., Parkhill J., Weissenbach J., MetaHIT Consortium, Bork P., Ehrlich S.D., Wang J. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59-65. DOI 10.1038/nature08821.
34. Reddy S.S., Brandt L.J. Clostridium difficileinfection and inflammatory bowel disease. J. Clin. Gastroenterol. 2013;47(8):666-671. DOI 10.1097/MCG.0b013e31828b288a.
35. Rossen N.G., Fuentes S., van der Spek M.J., Tijssen J.G., Hart man J.H., Duflou A., Löwenberg M., van den Brink G.R., Mathus Vliegen E.M., de Vos W.M., Zoetendal E.G., D’Haens G.R., Pon sioen C.Y. Findings from a randomized controlled trial of fecal transplantation for patients with ulcerative colitis. Gastroenterology. 2015;149(1):110-118. DOI 10.1053/j.gastro.2015.03.045.
36. Saebo A., Vik E., Lange O.J., Matuszkiewicz L. Inflammatory bowel disease associated with Yersinia enterocoliticaO:3 infection. Eur. J. Intern. Med. 2005;16(3):176-182.
37. Shen Z.H., Zhu C.X., Quan Y.S., Yang Z.Y., Wu S., Luo W.W., Tan B., Wang X.Y. Relationship between intestinal microbiota and ulcerative colitis: mechanisms and clinical application of probiotics and fecal microbiota transplantation. World J. Gastroenterol. 2018;24(1):5-14. DOI 10.3748/wjg.v24.i1.5.
38. Sonnenberg A., Genta R.M. Low prevalence of Helicobacter pyloriin fection among patients with inflammatory bowel disease. Aliment. Pharmacol. Ther. 2012;35(4):469-476. DOI 10.1111/j.1365-2036.2011.04969.x.
39. Staley C., Hamilton M.J., Vaughn B.P., Graiziger C.T., Newman K.M., Kabage A.J., Sadowsky M.J., Khoruts A. Successful resolution of recurrent Clostridium difficileinfection using freeze-dried, encapsu lated fecal microbiota; pragmatic cohort study. Am. J. Gastroenterol. 2017;112(6):940-947. DOI 10.1038/ajg.2017.6.
40. van Nood E., Vrieze A., Nieuwdorp M., Fuentes S., Zoetendal E.G., de Vos W.M., Visser C.E., Kuijper E.J., Bartelsman J.F., Tijssen J.G., Speelman P., Dijkgraaf M.G., Keller J.J. Duodenal infusion of do nor feces for recurrent Clostridium difficile. N. Engl. J. Med. 2013; 368(5):407-415. DOI 10.1056/NEJMoa1205037.
41. Vaughn B.P., Vatanen T., Allegretti J.R., Bai A., Xavier R.J., Korze nik J., Gevers D., Ting A., Robson S.C., Moss A.C. Increased intestinal microbial diversity following fecal microbiota transplant for active Crohn’s disease. Inflamm. Bowel Dis. 2016;22(9):2182-2190. DOI 10.1097/MIB.0000000000000893.
42. Wang Y., Qian P.Y. Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. PLoS One. 2009;4:e7401. DOI 10.1371/journal.pone.0007401.