Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Whole-genome association studies of distribution of developmental abnormalities and other breeding-valuable qualitative traits in offspring of the Russian large-white boars

https://doi.org/10.18699/VJ20.612

Abstract

Identifying genome regions that are directly or indirectly associated with developmental defects and malformations in domesticated pigs can help identify genomic traits used as biomarkers of the structural and functional composition of the body, their metabolic status and genetic diseases as well. Such studies are directly related to the improvement of the economic efficiency, as they allow identification and exclusion of defect animals, who may carry target genes not appearing phenotypically, from the breeding process. In the current work, we have searched for these kind of target genes and genome regions with conducting the genome-wide association studies using PorcineSNP60K BeadChips (Illumina, San Diego, USA). A total of 48 boars of a large white breed of the nucleus farm “Znamenskoe” were analyzed for 21 traits of indicated shortcomings of the exterior and defects of development in 39,153 their offspring.  Calculations were made using a mixed type linear model in package GEMMA. In this study, we selected only 36,704 polymorphic SNPs from an initial 61,000-strong SNP set. After GWAS, we obtained 24 alleles in 11 corresponding genes  (P < 0.1) in the genome of pigs, which are significantly correlated with traits of developmental abnormalities such as anal atresia (ARMC7,FANCC,RND3,ENSSSCG00000017216), limb problems (PAWR,NTM,OPCML,ENSSSCG00000040250, ENSSSCG00000017018) and tremor of piglets (RIC3,ENSSSCG00000032665). Also, co-expression of the NTM,OPCMLand  RND3genes was revealed. This study confirms the relevance of using the single SNP detection according to the single trait approach in associative studies, even for small sample numbers.

About the Authors

A. A. Traspov
L.K. Ernst Federal Science Center for Animal Husbandry
Russian Federation

Dubrovitzy, Podolsk municipal district, Moscow region



O. V. Kostyunina
L.K. Ernst Federal Science Center for Animal Husbandry
Russian Federation

Dubrovitzy, Podolsk municipal district, Moscow region



A. A. Belous
L.K. Ernst Federal Science Center for Animal Husbandry
Russian Federation

Dubrovitzy, Podolsk municipal district, Moscow region



T. V. Karpushkina
L.K. Ernst Federal Science Center for Animal Husbandry
Russian Federation

Dubrovitzy, Podolsk municipal district, Moscow region



N. A. Svejenceva
L.K. Ernst Federal Science Center for Animal Husbandry
Russian Federation

Dubrovitzy, Podolsk municipal district, Moscow region



N. A. Zinovieva
L.K. Ernst Federal Science Center for Animal Husbandry
Russian Federation

Dubrovitzy, Podolsk municipal district, Moscow region



References

1. Dolmatova A., Skovorodin E. The use of DNA polymorphism in the selection of pigs. In: Proc. of the Int. Sci. and Pract. Conf. “Modern Problems of Intensification of Pork Production in the CIS Countries”, dedicated to the 75th anniversary of the Honored scientist of the Russian Federation, professor V.E. Ulitko, July 7–10, 2010. Ulyanovsk, 2010;138-143. (in Russian)

2. Plemyashov K. Genomic selection – the future of animal husbandry. Zhivotnovodstvo Rossii = Animal Husbandry of Russia. 2014;5:2-4. (in Russian)

3. Barrett J., Fry B., Maller J., Daly M. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21(2):263-265. DOI 10.1093/bioinformatics/bth457.

4. Benjamini Y., Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Statist. Soc. B. 1995;57(1):289-300. DOI 10.2307/2346101.

5. Boddicker N., Waide E.H., Rowland R.R.R., Lunney J.K., Garrick D.J., Reecy J.M., Dekkers J.C.M. Evidence for a major QTL associated with host response to porcine reproductive and respiratory syndrome virus challenge. J. Anim. Sci. 2012;90(6):1733-1746.

6. Bruun C.S., Jorgensen C.B., Nielsen V.H., Andersson L., Fredholm M. Evaluation of the porcine melanocortin 4 receptor(MC4R) gene as a positional candidate for a fatness QTL in a cross between Landrace and Hampshire. Anim. Genet. 2006;37(4):359-362. DOI 10.1111/j.1365-2052.2006.01488.x.

7. Ciobanu D.C., Lonergan S.M., Huff-Lonergan E.J. Genetics of meat quality and carcass traits. In: Rothschild M.F., Ruvinsky A. (Eds.). The Genetics of the Pig. 2nd ed. Wallingford: CAB International, 2011;355-389.

8. Ernst C.W., Steibel J.P. Molecular advances in QTL discovery and application in pig breeding. Trends Genet. 2013;29(4):215-224. DOI 10.1016/j.tig.2013.02.002.

9. McLaren W., Gil L., Hunt S., Riat H., Ritchie G., Thormann A., Flicek P., Cunningham F. The Ensembl Variant Effect Predictor. Genome Biol. 2016;17(1):122. DOI10.1186/s13059-016-0974-4.

10. Nyachoti C., Kiarie E., Bhandari S., Zhang G., Krause D. Weaned pig responses to Escherichia coli K88 oral challenge when receiving a lysozyme supplement. J. Anim. Sci. 2012;90(1):252-260. DOI 10.2527/jas.2010-3596.

11. Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M., Bender D., Maller J., Sklar P., Bakker P., Daly M., Sham P. PLINK: a toolset for whole-genome association and population-based linkage analysis. Am. J. Hum. Genet. 2007;81:559-575. DOI 10.1086/519795.

12. Peterson R.A. Estimating normalization transformations with bestNormalize. 2017. Available at: https://github.com/petersonR/bestNormalize

13. Salas R., Mingala C. Genetic factors affecting pork quality: halothane and rendement napole genes. Anim. Biotechnol. 2017;28(2):148-155. DOI 10.1080/10495398.2016.1243550. Epub 2016 Nov. 17.

14. See T., Max F., Rothschild C., Christains J. Swine Genetic Abnormalities. Pork Information Gateway. 2006; PIG 06-06-01.

15. Sermyagin А., Gladyr E., Plemyashov K., Kudinov A., Dotsev A., Deniskova T., Zinovieva N. Genome-wide association studies for milk production traits in Russian population of Holstein and blackand-white cattle. In: Anisimov K.V. et al. (Eds.). Proc. of the Sci.-Pract. Conf. “Research and Development – 2016”, 14–15 Dec. 2016, Moscow, Russia. Springer Open, 2018;591-599. DOI 10.1007/978-3-319-62870-7_62.

16. Sermyagin A., Kovalyuk N., Ermilov A., Yanchukov I., Satsuk V., Do tsev A., Deniskova T., Brem G., Zinovieva N.A. Associations of Bola-drb3 genotypes with breeding values for milk production traits in Russian dairy cattle population. Selskokhozyaystvennaya Biologiya = Agricultural Biology. 2016;51(6):775-781. DOI 10.15389/agrobiology.2016.6.775eng.

17. Storey J., Bass A., Dabney A., Robinson D. qvalue: Q-value estimation for false discovery rate control. R package version 2.10.1. 2017. http://github.com/StoreyLab/qvalue

18. Turner S. qqman: Q-Q and Manhattan Plots for GWAS Data. R package version 0.1.4. 2017. https://CRAN.R-project.org/package=qqman

19. Zhou X., Stephens M. Genome-wide efficient mixed-model analysis for association studies. Nat. Genet. 2012;44:821-824. DOI 10.1038/ng.2310.


Review

Views: 1389


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)