Preview

Vavilov Journal of Genetics and Breeding

Advanced search

COEVOLUTION IN «A PREDATOR–PREY» SYSTEM: AN ECOGENETIC MODEL

Abstract

In most natural populations, intraspecies competition for natural resources is supplemented by a predator impact. We suppose that the mode and intensity of the interaction between a prey and its predator affects the course of competitive or sympatric speciation among the prey and processes of co-evolution or cospeciation. Mathematical methods allow development of models precisely describing all sides of intra and interspecies interactions. In this paper, we use mathematical modeling to investigate the effect of the intensity of interspecies interactions on competitive or sympatric speciation inside a prey population. The iIntensity of the interaction is the average number of prey which predators eat in a unit of time: the higher is the number of prey eaten by predators, the greater is the intensity of the interaction. In mathematical models, the intensity of such interaction is determined by many parameters. Changes in these parameters will affect the intensity of the interaction. It was found that sufficiently high intensity of interaction slows down competitive speciation among the prey. The preys in this case, seeking to avoid the impact of predators by altering their adaptive traits. Another important result was that the speciation of predators follows prey speciation when the probability of mutational changes in adaptive traits of predators exceeds that in the prey.

About the Author

Yu. S. Букин
Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia National Research Irkutsk State Technical University, Irkutsk, Russia
Russian Federation


References

1. Гинзбург Э.Х. Описание наследования количественных признаков. Н.: Наука, 1984. 250 с.

2. Загускин В.Л. Справочник по численным методам решения уравнений. М.: ФИЗМАТГИЗ, 1960. 216 с.

3. Колмогоров А.Н. Качественное изучение математических моделей популяций // Проблемы кибернетики. 1972. Вып. 25. М.: Наука, 1972. C. 100–106.

4. Свирежев Ю.М., Логофет Д.О. Устойчивость биологических сообществ. М.: Наука, 1978. 352 c.

5. Семовский С.В., Букин Ю.С., Щербаков Д.Ю. Модели симпатрического видообразования в изменяющихся условиях среды // Сиб. экол. журнал. 2004. Т. 5. С. 621–627.

6. Abrams P.A. The evolution of predator-prey interactions: Theory and evidence // Annu. Rev. Ecol. Syst. 2000. V. 31. P. 79–105.

7. Barker S.C., Whiting M., Johnson K.P., Murrell A. Phylogeny of the lice (Insecta, Phthiraptera) inferred from small subunit rRNA // Zool. Scripta. 2003. V. 32. No. 5. P. 407–414.

8. Bukin Ju.S., Pudovkina T.A., Sherbakov D.Ju., Sitnikova T.Ya. Genetic fl ows in a structured one-dimensional population: Simulation and real data on Baikalian Polychaetes M. Godlewskii // In silico Biol. 2007. V. 7. No. 3. P. 277–284.

9. Dieckmann U., Doebeli M. On the origin of species by sympatric speciation // Nature. 1999. V. 400. P. 354–357.

10. Dieckmann U., Doebeli M., Johan A., Metz J., Tautz D. Adaptive Speciation. Cambridge Univ. Press, 2004. 446 p.

11. Dieckmann U., Law R. The dynamical theory of coevolution: a derivation from stochastic ecological processes // Math. Biol. 1996. V. 34. P. 579–612.

12. Doebeli M., Dieckmann U. Evolutionary branching and sympatric speciation caused by different types of ecological interactions // Am. Nat. 2000. V. 156. P. 77–101.

13. Emerson B.C., Kolm N. Species diversity can drive speciation // Nature. 2005. V. 434. P. 1015–1017.

14. Forbes A.A., Powell T.H.Q., Stelinski L.L., Smith J.J., Feder L.J. Sequential sympatric speciation across trophic levels // Science. 2009. V. 323. No. 5915. P. 776–779.

15. Macdonald K.S., Yampolsky L., Emmett Duffy J. Molecular and morphological evolution of the amphipod radiation of Lake Baikal // Mol. Phylogenet. Evolut. 2005. V. 35. P. 323–343.

16. Meixner M.J., Carsten Luter C., Eckert C. et al. Phylogenetic analysis of freshwater sponges provide evidence for endemism and radiation in ancient lakes // Mol. Phylogenet. Evol. 2007. V. 45. P. 875–886.

17. Sasaki A. Host-parasite coevolution in a multilocus gene-forgene system // Proc. Roy. Soc. Biol. Sci. Ser. 2000. V. 267.P. 2183–2188.

18. Semovski S.V., Bukin Y.S., Sherbakov D.Y. Speciation and neutral molecular evolution in one-dimensional closed population // Intern. J. Modern Physics. 2003. V. 14. P. 973–983.

19. Sherbakov D.Y., Kamaltynov R.M., Ogarkov O.B., Verheyen E. Patterns of evolutionary change in Baikalian gammarids inferred from DNA sequences (Crustacea, Amphipoda) // Mol. Phylogenet. Evol. 1998. V. 10. P. 160–167.

20. Simms E.L. The evolutionary genetics of plant-pathogen systems // Bioscience. 1996. V. 46. P. 136–143.

21. Smith V.S., Page R.D.M., Johnson K.P. Data incongruence and the problem of avian louse phylogeny // Zool. Scripta. 2004. V. 33. No. 3. P. 239–259.

22. Takasu F. Mo delling the arms race in avian brood parasitism // Evol. Ecol. 1998. V. 12. P. 969–987.

23. Takasu F. Co-evolutionary dynamics of egg appearance in avian brood parasitism // Evol. Ecol. Res. 2003. V. 5. P. 345–362.

24. Takasu F., Kawasaki K., Nakamura H. et al. Modeling the population dynamics of a cuckoo-host association and the evolution of host defenses // Am. Nat. 1993. V. 142. P. 819–839.


Review

Views: 950


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)