Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

РЕГУЛЯТОРНЫЕ ТРАНСКРИПЦИОННЫЕ ФАКТОРЫ МОГУТ КОНТРОЛИРОВАТЬ ПРОЦЕСС ТРАНСКРИПЦИИ НА СТАДИИ ЭЛОНГАЦИИ пре-мРНК

Аннотация

Регуляторные транскрипционные факторы белки, распознающие определенные последовательности ДНК, – осуществляют избирательную регуляцию уровня транскрипции различных наборов генов в зависимости от стадии онтогенеза, типа клеток и внешних условий. Согласно устоявшимся представлениям , эти белки контролируют процесс транскрипции на стадии сборки преинициаторного комплекса Пол II. Однако постепенно накапливаются данные о том, что регуляторные транскрипционные факторы могут принимать участие и в контроле процесса элонгации. Настоящий обзор посвящен систематизации таких данных.

Об авторах

В. М. Меркулов
Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук», Новосибирск, Россия
Россия


Т. И. Меркулова
Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук», Новосибирск, Россия
Россия


Список литературы

1. Маркова Е.Н., Петрова Н.В., Разин С.В., Кантидзе О.Л. Транскрипционный фактор Runx1 // Молекуляр. биология. 2012. Т. 46. № 6. С. 846–859.

2. Меркулова Т.И., Ананько Е.А., Игнатьева Е.В., Колчанов Н.А. Регуляторные коды транскрипции геномов эукариот // Генетика. 2013. Т. 49. № 1. С. 37–54.

3. Barboric M., Nissen R.M., Kanazawa S. et al. NF-kappaB binds P-TEFb to stimulate transcriptional elongation by RNA polymerase II // Mol. Cell. 2001. V. 8. P. 327–337.

4. Bender T.P., Thompson C.B., Kuehl W.M. Differential expression of c-myb mRNA in murine B lymphomas by a block to transcription elongation // Science. 1987. V. 237. P. 1473–1476.

5. Bottardi S., Zmiri F.A., Bourgoin V. et al. Ikaros interacts with P-TEFb and cooperates with GATA-1 to enhance transcription elongation // Nucl. Acids Res. 2011. V. 39. P. 3505–3519.

6. Buganim Y., Faddah D.A., Jaenisch R. Mechanisms and models of somatic cell reprogramming // Nat. Rev. Genet. 2013. V. 14. P. 427–439.

7. Charoensawan V., Wilson D., Teichmann S.A. Genomic repertoires of DNA-binding transcription factors across the tree of life // Nucl. Acids Res. 2010. V. 38. P. 7364–7377.

8. Chen Y., Yamaguchi Y., Tsugeno Y. et al. DSIF, the Paf1 complex, and Tat-SF1 have nonredundant, cooperative roles in RNA polymerase II elongation // Genes Dev. 2009. V. 23. P. 2765–2777.

9. DeLaForest A., Nagaoka M., Si-Tayeb K. et al. HNF4A is essential for specifi cation of hepatic progenitors from human pluripotent stem cells // Development. 2011. V. 138. P. 4143–4153.

10. Dey A., Chao S.H., Lane D.P. HEXIM1 and the control of transcription elongation: from cancer and infl ammation to AIDS and cardiac hypertrophy // Cell Cycle. 2007. V. 6. P. 1856–1863.

11. Diamant G., Dikstein R. Transcriptional control by NF-κB: elongation in focus // Biochim. Biophys. Acta. 2013. V. 1829. P. 937–945.

12. Eberhardy S.R., Farnham P.J. c-Myc mediates activation of the cad promoter via a post-RNA polymerase II recruitment mechanism // J. Biol. Chem. 2001. V. 276. P. 48562–48571.

13. Eberhardy S.R., Farnham P.J. Myc recruits P-TEFb to mediate the fi nal step in the transcriptional activation of the cad promoter // J. Biol. Chem. 2002. V. 277. P. 40156–40162.

14. Egloff S., Szczepaniak S.A., Dienstbier M. et al. The integrator complex recognizes a new double mark on the RNA polymerase II carboxyl-terminal domain // J. Biol. Chem. 2010. V. 285. P. 20564–20569.

15. Fuda N.J., Ardehali M.B., Lis J.T. Defi ning mechanisms that regulate RNA polymerase II transcription in vivo // Nature. 2009. V. 461. P. 186–192.

16. Fuda N.J., Lis J.T. A new player in Pol II pausing // EMBO J. 2013. V. 32. P. 1796–1808.

17. Glover-Cutter K., Kim S., Espinosa J., Bentley D.L. RNA polymerase II pauses and associates with pre-mRNA processing factors at both ends of genes // Nat. Struct. Mol. Biol. 2008. V. 15. P. 71–78.

18. Guenther M.G., Levine S.S., Boyer L.A. et al. A chromatin landmark and transcription initiation at most promoters in human cells // Cell. 2007. V. 130. P. 77–88.

19. Guertin M.J., Lis J.T. Chromatin landscape dictates HSF binding to target DNA elements // PLoS Genet. 2010. V. 6. e1001114.

20. Hochheimer A., Tjian R. Diversifi ed transcription initiation complexes expand promoter selectivity and tissuespecific gene expression // Genes Dev. 2003. V. 17. P. 1309–1320.

21. Jiang H., Zhang F., Kurosu T., Peterlin B.M. Runx1 binds positive transcription elongation factor b and represses transcriptional elongation by RNA polymerase II: possible mechanism of CD4 silencing // Mol. Cell. Biol. 2005. V. 25. P. 10675–10683.

22. Juven-Gershon T., Kadonaga J.T. Regulation of gene expression via the core promoter and the basal transcriptional machinery // Dev. Biol. 2010. V. 339. P. 225–229.

23. Keys J.R., Tallack M.R., Zhan Y. et al. A mechanism for Ikaros regulation of human globin gene switching // Br. J. Haematol. 2008. V. 141. P. 398–406.

24. Kim S.I., Bultman S.J., Kiefer C.M. BRG1 requirement for long-range interaction of a locus control region with a downstream promoter // Proc. Natl Acad Sci. USA. 2009. V. 106. P. 2259–2264.

25. Kwak H., Fuda N.J., Core L.J., Lis J.T. Precise maps of RNA polymerase reveal how promoters direct initiation and pausing // Science. 2013. V. 339. P. 950–953.

26. Lee D.K., Duan H.O., Chang C. Androgen receptor interacts with the positive elongation factor P-TEFb and enhances the effi ciency of transcriptional elongation // J. Biol. Chem. 2001. V. 27. P. 9978–9984.

27. Lenasi T., Barboric M. P-TEFb stimulates transcription elongation and pre-mRNA splicing through multilateral mechanisms // RNA Biol. 2010. V. 7. P. 145–150.

28. Lis J.T., Mason P., Peng J. et al. P-TEFb kinase recruitment and function at heat shock loci // Genes Dev. 2000. V. 14. P. 792–803.

29. Lüscher B., Vervoorts J. Regulation of gene transcription by the oncoprotein MYC // Gene. 2012. V. 494. P. 145–160.

30. Mahajan M.C., Karmakar S., Weissman S. Control of beta globin genes // J. Cell Biochem. 2007. V. 102. P. 801–810.

31. Mandal S.S., Chu C., Wada T. et al. Functional interactions of RNA-capping enzyme with factors that positively and negatively regulate promoter escape by RNA polymerase II // Proc. Natl Acad. Sci. USA. 2004. V. 101. P. 7572–7577.

32. Miltenberger R.J., Sukow K.A., Farnham P.J. An E-boxmediated increase in cad transcription at the G1/S-phase boundary is suppressed by inhibitory c-Myc mutants // Mol. Cell. Biol. 1995. V. 15. P. 2527–2535.

33. Min I.M., Waterfall J.J., Core L.J. et al. Regulating RNA polymerase pausing and transcription elongation in embryonic stem cells // Genes Dev. 2011. V. 25. P. 742–754.

34. Mitra P., Pereira L.A., Drabsch Y. et al. Estrogen receptor-α recruits P-TEFb to overcome transcriptional pausing in intron 1 of the MYB gene // Nucl. Acids Res. 2012. V. 40. P. 5988–6000.

35. Nechaev S., Adelman K. Pol II waiting in the starting gates: Regulating the transition from transcription initiation into productive elongation // Biochim. Biophys. Acta. 2011. V. 1809. P. 34–45.

36. Nissen R.M., Yamamoto K.R. The glucocorticoid receptor inhibits NFkappaB by interfering with serine-2 phosphorylation of the RNA polymerase II carboxy-terminal domain // Genes Dev. 2000. V. 14. P. 2314–2329.

37. Nowak D.E., Tian B., Jamaluddin M. et al. RelA Ser276 phosphorylation is required for activation of a subset of NF-kappaB-dependent genes by recruiting cyclin-dependent kinase 9/cyclin T1 complexes // Mol. Cell. Biol. 2008. V. 28. P. 3623–3638.

38. Osmanbeyoglu H.U., Lu K.N., Oesterreich S. et al. Estrogen represses gene expression through reconfi guring chromatin structures // Nucl. Acids Res. 2013. V. 41. P. 8061–8071.

39. Oven I., Brdicková N., Kohoutek J. et al. AIRE recruits PTEFb for transcriptional elongation of target genes in medullary thymic epithelial cells // Mol. Cell. Biol. 2007. V. 27. P. 8815–8823.

40. Peterlin B.M., Price D.H. Controlling the elongation phase of transcription with P-TEFb // Mol. Cell. 2006. V. 23. P. 297–305.

41. Poss Z.C., Ebmeier C.C., Taatjes D.J. The Mediator complex and transcription regulation // Crit. Rev. Biochem. Mol. Biol. 2013.

42. Rahl P.B., Lin C.Y., Seila A.C. et al. c-Myc regulates transcriptional pause release // Cell. 2010. V. 141. P. 432–445.

43. Roeder R.G. Transcriptional regulation and the role of diverse coactivators in animal cells // FEBS Lett. 2005. V. 579. P. 909–915.

44. Saunders A., Core L.J., Sutcliffe C. et al. Extensive polymerase pausing during Drosophila axis patterning enables highlevel and pliable transcription // Genes Dev. 2013. V. 27. P. 1146–1158.

45. Sawada S., Scarborough J.D., Killeen N., Littman D.R. A lineage-specifi c transcriptional silencer regulates CD4 gene expression during T lymphocyte development // Cell. 1994. V. 77. P. 917–929.

46. Sharma M., George A.A., Singh B.N. et al. Regulation of transcript elongation through cooperative and ordered recruitment of cofactors // J. Biol. Chem. 2007. V. 282. P. 20887–20896.

47. Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fi broblast cultures by defi ned factors // Cell. 2006. V. 126. P. 663–676.

48. Taniuchi I., Osato M., Egawa T. et al. Differential requirements for Runx proteins in CD4 repression and epigenetic silencing during T lymphocyte development // Cell. 2002. V. 111. P. 621–633.

49. Taube R., Lin X., Irwin D. et al. Interaction between P-TEFb and the C-terminal domain of RNA polymerase II activates transcriptional elongation from sites upstream or downstream of target genes // Mol. Cell Biol. 2002. V. 22. P. 321–331.

50. Thompson M.A., Flegg R., Westin E.H., Ramsay R.G. Microsatellite deletions in the c-myb transcriptional attenuator region associated with over-expression in colon tumour cell lines // Oncogene. 1997. V. 14. P. 1715–1723.

51. Trotter K.W., Archer T.K. The BRG1 transcriptional coregulator // Nucl. Recept. Signal. 2008. V. 6. e004.

52. Vaquerizas J.M., Kummerfeld S.K., Teichmann S.A., Luscombe N.M. A census of human transcription factors: function, expression and evolution // Nat. Rev. Genet. 2009. V. 10. P. 252–263.

53. Watson R.J. A transcriptional arrest mechanism involved in controlling constitutive levels of mouse c-myb mRNA // Oncogene. 1988. V. 2. P. 267–272.

54. Wernig M., Meissner A., Foreman R. et al. In vitro reprogramming of fi broblasts into a pluripotent ES-cell-like state // Nature. 2007. V. 448. P. 318–324.

55. White U.A., Stephens J.M. Transcriptional factors that promote formation of white adipose tissue // Mol. Cell. Endocrinol. 2010. V. 318. P. 10–14.

56. Wittmann B.M., Fujinaga K., Deng H., Ogba N., Montano M.M. The breast cell growth inhibitor, estrogen down regulated gene 1, modulates a novel functional interaction between estrogen receptor alpha and transcriptional elongation factor cyclin T1 // Oncogene. 2005. V. 24. P. 5576–5588.

57. Yamaguchi Y., Shibata H., Handa H. Transcription elongation factors DSIF and NELF: promoter-proximal pausing and beyond // Biochim. Biophys. Acta. 2013. V. 1829. P. 98–104.

58. Zhang D., Glass C. Towards an understanding of cell-specific functions of signal-dependent transcription factors // J. Mol. Endocrinol. 2013.

59. Zhang H.M., Chen H., Liu W. et al. Animal TFDB: a comprehensive animal transcription factor database // Nucl. Acids Res. 2012. V. 40. P. D144–149.

60. Zhong H., Voll R.E., Ghosh S. Phosphorylation of NF-kappa B p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300 // Mol. Cell. 1998. V. 1. P. 661–671.

61. Zumer K., Saksela K., Peterlin B.M. The mechanism of tissuerestricted antigen gene expression by AIRE // J. Immunol. 2013. V. 190. P. 2479–2482.


Рецензия

Просмотров: 445


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)