Preview

Vavilov Journal of Genetics and Breeding

Advanced search

INVESTIGATION OF THE SPATIAL GENOME ORGANIZATION OF MOUSE SPERM AND FIBROBLASTS BY THE Hi-C METHOD

Abstract

The spatial organization of an eukaryotic genome plays an important role in the control of nuclear gene expression. The new Hi-C method allows investigation of the three-dimensional architecture of whole genomes. It has not been applied to study of the spatial configuration of a germ cell genome hitherto. Here we describe a protocol for production and quality control of Hi-C libraries from fibroblasts and sperm cells. Our results demonstrate that the Hi-C method can be used for studying the spatial organization of the densely packed sperm genome.

About the Authors

N. R. Battulin
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia Novosibirsk National Research State University, Novosibirsk, Russia
Russian Federation


V. S. Fishman
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia Novosibirsk National Research State University, Novosibirsk, Russia
Russian Federation


A. A. Khabarova
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Russian Federation


M. Yu. Pomaznoy
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Russian Federation


T. A. Shnaider
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia Novosibirsk National Research State University, Novosibirsk, Russia
Russian Federation


D. A. Afonnikov
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia Novosibirsk National Research State University, Novosibirsk, Russia
Russian Federation


O. L. Serov
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia Novosibirsk National Research State University, Novosibirsk, Russia
Russian Federation


References

1. Баттулин Н.Р., Фишман В.С., Орлов Ю.Л. и др. 3С-методы в исследованиях пространственной организации генома // Вавилов. журн. генет. и селекции. 2012. Т. 16. № 4/2. С. 872–878.

2. Belton J.-M., McCord R.P., Gibcus J.H. et al. Hi-C: A comprehensive technique to capture the conformation of genomes // Methods. 2012. V. 58. No. 3. P. 268–276.

3. Bench G.S., Friz A.M., Corzett M.H. et al. DNA and total protamine masses in individual sperm from fertile mammalian subjects // Cytometry. 1996. V. 23. No. 4. P. 263–271.

4. Brewer L.R., Corzett M., Balhorn R. Protamine-induced condensation and decondensation of the same DNA molecule // Science. 1999. V. 286. No. 5437. P. 120–123.

5. Brykczynska U., Hisano M., Erkek S. et al. Repressive and active histone methylation mark distinct promoters in human and mouse spermatozoa // Nat. Struct. Mol. Biol. 2010. V. 17. No. 6. P. 679–587.

6. Dekker J., Rippe K., Dekker M. et al. Capturing chromosome conformation // Science. 2002. V. 295. P. 1306–1311. Dixon J.R., Selvaraj S., Yue F. et al. Topological domains in mammalian genomes identifi ed by analysis of chromatin interactions // Nature. 2012. V. 485. P. 376–380.

7. Gatewood J.M., Cook G.R., Balhorn R. et al. Isolation of four core histones from human sperm chromatin representing a minor subset of somatic histones // J. Biol. Chem. 1990. V. 265. No. 33. P. 20662–20666.

8. Horowitz R.A., Agard D.A., Sedat J.W. et al. The threedimensional architecture of chromatin in situ: electron tomography reveals fi bers composed of a continuously variable zig-zag nucleosomal ribbon // J. Cell. Biol. 1994. V. 125. No. 1. P. 1–10.

9. Imakaev M., Fudenberg G., McCord R.P. et al. Iterative correction of Hi-C data reveals hallmarks of chromosome organization // Nat. Meth. 2012. V. 9. P. 999–1003.

10. Kalhor R., Tjong H., Jayathilaka N. et al. Genome architectures revealed by tethered chromosome conformation capture and population-based modeling // Nat. Biotechnol. 2012. V. 30. P. 90–98.

11. Kruglova A.A., Matveeva N.M., Gridina M.M. et al. Dominance of parental genomes in embryonic stem cell/fibroblast hybrid cells depends on the ploidy of the somatic partner // Cell Tissue Res. 2010. V. 340. No. 3. P. 437–450.

12. Lieberman-Aiden E., van Berkum N.L., Williams L. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome // Science. 2009. V. 326. P. 289–293.

13. Wykes S.M., Krawetz S.A. The structural organization of sperm chromatin // J. Biol. Chem. 2003. V. 278. No. 32. P. 29471–29477.

14. Zalenskaya I.A., Zalensky A.O. Non-random positioning of chromosomes in human sperm nuclei // Chromosome Res. 2004. V. 12. No. 2. P. 163–173.


Review

Views: 725


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)