INDUCTION OF ACETYLATION PROCESSES IN ANIMALS WITH SEROTONERGIC NEURON DYSFUNCTION REVERSES THEIR CAPABILITY OF LONG-TERM MEMORY FORMATION
Abstract
The major tasks of neurobiology include the understanding of mechanisms governing long-term memory formation and search for means to improve memory. Animals with dysfunction of the serotonergic system are a convenient model for investigation of memory processes. The ablation of serotonergic neurons by the neurotoxin 5,7-DOT leads to inability of the mollusks to form an aversive food avoidance reflex. Previously we have found that epigenetic processes, such as histone methylation and acetylation, are involved in the formation of food aversion, and that disturbance of these processes leads to inability to form long-term memory. The goal of the current study was to investigate the possibility to reverse long-term memory in DOT-treated animals through the induction of acetylation processes. We found that treatment with histone deacetylase inhibitors NаB and Trichostatin А significantly increased the ability of DOT-treated animals to form the food aversion reflex. The results point to an important role of serotonin in the induction of the epigenetic processes mediating the formation of this type of long-term memory. By induction of acetylation processes, we managed to improve memory parameters significantly. Our “Neurodegeneration” model, based on ablation of serotonergic neurons, can be useful in studies of the epigenetic mechanisms underlying long-term memory destruction and screening of compounds crucial for memory formation.
About the Authors
O. V. VorobiovaRussian Federation
L. N. Grinkevich
Russian Federation
References
1. Балабан П.М., Захаров И.С. Обучение и развитие: общая основа двух явлений. М.: Наука, 1992. 152 c.
2. Гринкевич Л.Н., Лисачев П.Д., Баранова К.А., Харченко О.А. Сравнительный анализ активации МАР/ERK киназ в ЦНС животных, обладающих разной способностью к обучению // Рос. физиол. журн. им. И.М. Сеченова. 2006. Т. 92. № 5. С. 536–545.
3. Гринкевич Л.Н. Эпигенетика и формирование долговременной памяти // Рос. физиол. журн. им. И.М. Сеченова. 2012а. Т. 98. № 5. С. 553–574.
4. Гринкевич Л.Н. Исследование метилирования гистона Н3 при формировании долговременной памяти // Рос. физиол. журн. им. И.М. Сеченова. 2012б. Т. 98. № 9. С. 1111–1118.
5. Данилова А.Б., Лисачев П.Д., Гринкевич Л.Н. Сравнительные исследования МАРК/ERK-зависимого ацетилирования белков в ЦНС взрослых и ювенильных Helix при формировании долговременной памяти // Информ. вестн. ВОГиС. 2010. Т. 14. № 2. С. 312–319.
6. Шишкина Т.Г., Дыгало Н.Н. Нейробиологические основы депрессивных расстройств и действия антидепрессантов // Журн. высш. нерв. деятельности. 2010. Т. 60. № 2. С. 138–152.
7. Abel T., Zukin R.S. Epigenetic targets of HDAC inhibition in neurodegenerative and psychiatric disorders // Curr. Opin. Pharmacol. 2008. V. 8. No. 1. Р. 57–64.
8. Akbarian S., Huang H.S. Epigenetic regulation in human brainfocus on histone lysine methylation // Biol. Psychiatry. 2009. V. 65. No. 3. Р. 198–203.
9. Alarcon J.M., Malleret G., Touzani K., Vronskaya S., Ishii S., Kandel E.R., Barco A. Chromatin acetylation, memory, and LTP are impaired in CBP +/– mice: a model for the cognitive defi cit in Rubistein-Taybi syndrome and its amelioration // Neuron. 2004. V. 42. No. 6. Р. 947–959.
10. Alberini C.M. Transcription factors in long-term memory and synaptic plasticity // Physiol. Rev. 2009. V. 89. No. 1. Р. 121–145.
11. Bahari-Javan S., Maddalena A., Kerimoglu C., Wittnam J., Held T., Bähr M., Burkhardt S., Delalle I., Kügler S., Fischer A., Sananbenesi F. HDAC1 regulates fear extinction in mice // J. Neurosci. 2012. V. 32. No. 15. Р. 5062–5073.
12. Danilova A.B., Kharchenko O.A., Shevchenko K.G., Grinkevich L.N. Histone H3 acetylation is asymmetrically induced upon learning in identifi ed neurons of the food aversion network in the mollusk Helix lucorum // Front. Behav. Neurosci. 2010. V. 4. No. 180. Р. 1–7.
13. Danilova A.B., Grinkevich L.N. Inability of juvenile snails for long-term memory formation depends on acetylation status of histone H3 and can be improved by NaB treatment // PLoS ONE. 2012. V. 7. Issue 7. e41828. Р. 1–8.
14. Dos Santos Sant’ Anna G., Rostirola Elsner V., Moysés F., Reck Cechinel L., Agustini Lovatel G., Rodrigues Siqueira I. Histone deacetylase activity is altered in brain areas from aged rats // Neurosci. Lett. 2013. pii: S0304-3940(13)00920-8. doi: 10.1016/j.neulet.2013.10.016.
15. Fass D.M., Reis S.A., Ghosh B., Hennig K.M., Joseph N.F., Zhao W.N., Nieland T.J., Guan J.S., Kuhnle C.E., Tang W., Barker D.D., Mazitschek R., Schreiber S.L., Tsai L.H., Haggarty S.J. Crebinostat: a novel cognitive enhancer that inhibits histone deacetylase activity and modulates chromatin-mediated neuroplasticity // Neuropharmacology. 2013. V. 64. Р. 81–96.
16. Fischer A., Sananbenesi F., Wang X., Dobbin M., Tsai L.H. Recovery of learning and memory is associated with chromatin remodeling // Nature. 2007. V. 447. No. 7141. Р. 178–182.
17. Gill R.K., Kumar A., Malhotra P., Maher D., Singh V., Dudeja P.K., Alrefai W., Saksena S. Regulation of intestinal serotonin transporter expression via epigenetic mechanisms: role of HDAC2 // Am. J. Physiol. Cell Physiol. 2013. V. 304. No. 4. Р. 334–341.
18. Grinkevich L.N., Lisachev P.D., Kharchenko O.A., Vasil’ev G.V. Expression of MAP/ERK kinase cascade corresponds to the ability to develop food aversion in terrestrial snail at different stages of ontogenesis // Brain Res. 2008. V. 1187. Р. 12–19.
19. Guan Z., Giustetto M., Lomvardas S., Kim J.H., Miniaci M.C., Schwartz J.H., Thanos D., Kandel E.R. Integration of long-term-memory-related synaptic plasticity involves bidirectional regulation of gene expression and chromatin structure // Cell. 2002. V. 111. No. 4. Р. 483–493.
20. Guan J.S., Haggarty S.J., Giacometti E., Dannenberg J.H., Joseph N., Gao J., Nieland T.J., Zhou Y., Wang X., Mazitschek R., Bradner J.E., DePinho R.A., Jaenisch R., Tsai L.H. HDAC2 negatively regulates memory formation and synaptic plasticity // Nature. 2009. V. 459. No. 7243. Р. 55–60.
21. Jin Q., Yu L.R., Wang L., Zhang Z., Kasper L.H., Lee J.E., Wang C., Brindle P.K., Dent S.Y., Ge K. Distinct roles of GCN5/PCAF-mediated H3K9ac and CBP/p300-mediated H3K18/27ac in nuclear receptor transactivation // EMBO J. 2011. V. 30. No. 2. Р. 249–62.
22. Kandel E. The molecular biology of memory: cAMP, PKA, CRE, CREB-1, CREB-2, and CPEB // Mol. Brain. 2012. V. 5. No. 14. P. 1–12.
23. Korzus E., Rosenfeld M.G., Mayford M. CBP histone acetyltransferase activity is a critical component of memory consolidation // Neuron. 2004. V. 42. No. 6. Р. 961–972.
24. Kuhn M., Popovic A., Pezawas L. Neuroplasticity and memory formation in major depressive disorder: An imaging genetics perspective on serotonin and BDNF // Restor. Neurol. Neurosci. 2013. [Epub ahead of print].
25. Kurita M., Moreno J.L., Holloway T., Kozlenkov A., Mocci G., García-Bea A., Hanks J.B., Neve R., Nestler E.J., Russo S.J., González-Maeso J. Repressive epigenetic changes at the mGlu2 promoter in frontal cortex of 5-HT2A knockout mice // Mol. Pharmacol. 2013. V. 83. No. 6. Р. 1166–1175.
26. Kurita M., Holloway T., García-Bea A., Kozlenkov A., Friedman A.K., Moreno J.L., Heshmati M., Golden S.A., Kennedy P.J., Takahashi N., Dietz D.M., Mocci G., Gabilondo A.M., Hanks J., Umali A., Callado L.F., Gallitano A.L., Neve R.L., Shen L., Buxbaum J.D., Han M.H., Nestler E.J., Meana J.J., Russo S.J., González-Maeso J. HDAC2 regulates atypical antipsychotic responses through the modulation of mGlu2 promoter activity // Nat. Neurosci. 2012. V. 15. No. 9. Р. 1245–1254.
27. Levenson J.M., Sweatt J.D. Epigenetic mechanisms: a common theme in vertebrate and invertebrate memory formation // Cell Mol. Life Sci. 2006. V. 63. Р. 1009–1016.
28. Mungenast A.E., Tsai L.H. Cognitive function in health and disease: the role of epigenetic mechanisms // Neurodegener. Dis. 2012. V. 10. No. 1/4. Р. 191–194.
29. Peleg S., Sananbenesi F., Zovoilis A. et al. Altered histone acetylation is associated with age dependent memory impairment in mice // Science. 2010. V. 328. No. 5979. Р. 753–756.
30. de Ruijter A.J., van Gennip A.H., Caron H.N., Kemp S., van Kuilenburg A.B. Histone deacetylases (HDACs): characterization of the classical HDAC family // Biochem. J. 2003. V. 370. Pt 3. Р. 737–749.
31. Sando R., Gounko N., Pieraut S., Liao L., Yates J., 3rd, Maximov A. HDAC4 governs a transcriptional program essential for synaptic plasticity and memory // Cell. 2012. V. 151. No. 4. Р. 821–834.
32. Spange S., Wagner T., Heinzel T., Kramer O.H. Acetylation of non-histone proteins modulates cellular signalling at multiple levels // Int. J. Biochem. Cell Biol. 2009. V. 41. Р. 185–198.
33. Stafford J.M., Raybuck J.D., Ryabinin A.E., Lattal K.M. Increasing histone acetylation in the hippocampus-infralimbic network enhances fear extinction // Biol. Psychiatry. 2012. V. 72. No. 1. Р. 25–33.
34. Sweatt J.D. Experience-dependent epigenetic modifications in the central nervous system // Biol. Psychiatry. 2009. V. 65. Р. 191–197.
35. Takase K., Oda S., Kuroda M., Funato H. Monoaminergic and neuropeptidergic neurons have distinct expression profi les of histone deacetylases // PLoS One. 2013. V. 8. P. 3. Р. 1–19.
36. Tian F., Marini A.M., Lipsky R.H. Effects of histone deacetylase inhibitor Trichostatin A on epigenetic changes and transcriptional activation of Bdnf promoter 1 by rat hippocampal neurons // Ann. N.Y. Acad. Sci. 2010. No. 1199. Р. 186–193.
37. Ververis K., Hiong A., Karagiannis T.C., Licciardi P.V. Histone deacetylase inhibitors (HDACIs): multitargeted anticancer agents // Biologics. 2013. V. 7. Р. 47–60.
38. Wood M.A., Hawk J.D., Abel T. Combinatorial chromatin modifications and memory storage: A code for memory // Learn. Mem. 2006. V. 13. Р. 241–244.
39. Yamawaki Y., Fuchikami M., Morinobu S., Segawa M., Matsumoto T., Yamawaki S. Antidepressant-like effect of sodium butyrate (HDAC inhibitor) and its molecular mechanism of action in the rat hippocampus // World J. Biol. Psychiatry. 2012. V. 13. No. 6. Р. 458–467.
40. Zhao J., Goldberg J., Bremner J.D., Vaccadrino V. Association between promoter methylation of serotonin transporter gene and depressive symptoms: a monozygotic twin study // Psychosom. Med. 2013. V. 75. No. 6. Р. 523–529.