Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Recombinant short TNF-BD protein from smallpox virus is pharmacologically active in an experimental septic shock model

https://doi.org/10.18699/VJ20.616

Abstract

Tumor necrosis factor (TNF) is one among the key cytokines that mediate the immune system to protect humans against viral infections. Throughout evolution, anthropogenic Variola virus (VARV) has developed effective mechanisms to overcome human defense reactions. The viral genome encodes soluble proteins imitating the structure of cellular cytokine receptors. These proteins compete with cellular receptors for cytokine binding, thus blocking the antiviral immune response. In particular, the G2R gene of VARV encodes the TNF decoy receptor, VARV-CrmB protein. This protein consists of N-ended TNF-biding (TNF-BD) and C-ended chemokine binding (Ch-BD) domains. Recombinant VARV-CrmB protein has been produced in insect cells using molecular cloning methods and its TNF neutralizing activity has been shown in vitro and in vivo. To decrease the immunogenicity of this protein, a recombinant plasmid coding for shortened TNF-BD protein of VARV in Escherichia coli cells has been constructed. Using the method of immobilized metal affinity chromatography, recombinant TNF-BD protein corresponding to the TNF-biding domain of VARV-CrmB protein was purified from E. coli cells. The therapeutic potential of TNF-BD was studied using an experimental model of LPS-induced septic shock. After septic shock induction, several doses of recombinant TNF-BD were injected and the mortality of experimental animals was observed during 7 days. All mice not injected with TNF-BD had been dead by day 3 of the experiment, but 30, 40 and 60 % of the experimental animals, who received different TNF-BD doses, survived in a dose-dependent manner. Data obtained demonstrate that recombinant TNF-BD protein is pharmacologically active in the experimental model of LPS-induced septic shock.

About the Authors

I. P. Gileva
State Research Center of Virology and Biotechnology “Vector'’, Rospotrebnadzor
Russian Federation

Koltsovo, Novosibirsk region



S. N. Yakubitskiy
State Research Center of Virology and Biotechnology “Vector'’, Rospotrebnadzor
Russian Federation

Koltsovo, Novosibirsk region



I. V. Kolosova
State Research Center of Virology and Biotechnology “Vector'’, Rospotrebnadzor
Russian Federation

Koltsovo, Novosibirsk region



S. N. Shchelkunov
State Research Center of Virology and Biotechnology “Vector'’, Rospotrebnadzor; Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
Russian Federation

Koltsovo, Novosibirsk region



References

1. Nepomnyashchikh T.S., Tregubchak T.V., Yakubitskiy S.N., Tara-nov ОЯ., Maksyutov R.A., Shchelkunov S.N. Candidate antirheumatic genotherapeutic plasmid constructions have low immunoge-nicity. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2017;21(3):317-322. DOI 10.18699/VJ17.249. (in Russian)

2. Tregubchak T.V., Shekhovtsov S.V., Nepomnyashchikh T.S., Pel-tek S.E., Kolchanov N.A., Shchelkunov S.N. TNF-binding domain of the variola virus CrmB protein synthesized in Escherichia coli cells effectively interacts with human TNF. Dokl. Biochem. Bio-phys. 2015;462(1):176-180. DOI 10.1134/S1607672915030102.

3. Tsyrendorzhiev D.D., Orlovskaya I.A., Sennikov S.V., Tregubchak T.V., Gileva I.P., Tsyrendorzhieva M.D., Shchelkunov S.N. Biological effects of individually synthesized TNF-binding domain of variola virus CrmB protein. Bulletin of Experimental Biology and Medicine. 2014;157(2):249-252. DOI 10.1007/s10517-014-2537-6.

4. Alejo A., Ruiz-Arguello M.B., Ho Y., Smith V.P., Saraiva M., Al-cami A. A chemokine-binding domain in the tumor necrosis factor receptor from variola (smallpox) virus. Proc. Natl. Acad. Sci. USA. 2006;103:5995-6000.

5. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248-254.

6. Chen D.Y., Chen Y.M., Tsai W.C., Tseng J.C., Chen Y.H., Hsieh C.W., Hung W.T., Lan J.L. Significant associations of antidrug antibody levels with serum drug trough levels and therapeutic response of adalimumab and etanercept treatment in rheumatoid arthritis. Ann. Rheum. Dis. 2015;74(3):e16. DOI 10.1136/annrheumdis-2013-203893.

7. Efron P.A., Mohr A.M., Moore F.F., Moldawer L.L. The future of murine sepsis and trauma research models. J. Leukoc. Biol. 2015; 98(6):945-952. DOI 10.1189/jlb.5MR0315-127R.

8. Eng G.P., Bendtzen K., Bliddal H., Stoltenberg M., Szkudlarek M., Fana V, Lindegaard H.M., Omerovic E., Hojgaard P., Jensen E.K., Bouchelouche P.N. Antibodies to infliximab and adalimumab in patients with rheumatoid arthritis in clinical remission: a cross-sectional study. Arthritis. 2015;784825. DOI 10.1155/2015/784825.

9. Fei Y., Wang W., Kwiecinski J., Josefsson E., Pullerits R., Jonsson I.-M., Magnusson M., Jin T. The combination of a tumor necrosis factor inhibitor and antibiotic alleviates staphylococcal arthritis and sepsis in mice. J. Infed Dis. 2011;204(3):348-357. DOI 10.1093/infdis/jir266.

10. Gileva I.P., Nepomnyashikh T.S., Antonets D.V., Lebedev L.R., Koch-neva G.V., Grazhdantseva A.V., Shchelkunov S.N. Properties of the recombinant TNF binding proteins from variola, monkepox and cowpox viruses are different. Biochem. Biophphys. Acta. 2006; 1764:1710-1718.

11. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriofage T4. Nature. 1970;227:680-685.

12. Lamping N., Detter R., Schroder N.W., Pfeil D., Hallatschek W., Burger R., Schumann R.R. LPS-binding protein protects mice from septic shock caused by LPS or sram-negative bacteria. J. Clin. Invest. 1998;101(10):2065-2071.

13. Leturcq D.J., Moriarty A.M., Talbott G., Winn R.K., Martin T.R., Ule-vitch R.J. Therapeutic strategies to block LPS interactions with its receptor. Prog. Clin. Biol. Res. 1995;392:473-477.

14. Mandel M., Higa A. Calcium-dependent bacteriophage DNA infection. J. Mol. Biol. 1970;53:159-162.

15. Monaco C., Nanchahal J., Taylor P., Feldmann M. Anty-TNF therapy: past, present and future. Int. Immunol. 2015;27(1):55-62. DOI 10.1093/intimm/dxu107.

16. Sambrook J., Fritsch E.F., Maniatis T. Molecular Cloning: A Laboratory Manual. 2nd. edn. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press, 1989.

17. Seymour C.W., Rosengart M.R. Septic shock: advances in diagnoses and treatment. JAMA. 2015;314(7):708-717. DOI 10.1001/jama.2015.7885.

18. Shchelkunova G.A., Shchelkunov S.N. Immunomodulating drugs based on poxviral proteins. BioDrugs. 2016;30(1):9-16. DOI 10.1007/s40259-016-0158-5.

19. Stortz J.A., Raymond S.L., Mira J.C., Moldawer L.L., Mohr A.M., Efron P.A. Murine models of sepsis and trauma: Can we bridge the gap? ILAR J. 2017;58(1):90-105. DOI 10.1093./ilar/ilx007.

20. Thayer A. Centocor stops sales, trails or flagship drug. Chem. Eng. News. 1993;71(4):6. DOI 10.1021/cen-v71n004.p006.


Review

Views: 1315


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)