Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Metabolomic approach to search for fungal resistant forms of Aegilops tauschii Coss. from the VIR collection

https://doi.org/10.18699/VJ20.618

Abstract

Broadening of the genetic diversity of donors of resistance to biotic environmental factors is a challenging problem concerning Triticum L., which can be solved by using wild relatives of wheat, in particular, Aegilops tauschii Coss., in breeding programs. This species, believed to be the donor of D genome of common wheat (T. aestivum L.), is a source of some traits important for breeding. This greatly facilitates the possibility of crossing Ae. tauschii with common wheat. Aegilops L. species are donors of effective genes for resistance to fungal diseases in wheat. For instance, genes that determine resistance to rust agents in common wheat were successfully introgressed from Ae. tauschii into the genome of T. aestivum L. The aim of our study was to identify differences in metabolomic profiles of Ae. tauschii forms (genotypes), resistant or susceptible to such fungal pathogens as Puccinia triticina f. sp. tritici and Erysiphegraminis f. sp. tritici.These indicators may be used as biochemical markers of resistance. A comparative analysis of groups of Ae. tauschii accessions showed that metabolomic profiles of the forms with or without resistance to fungal pathogens differed significantly in the contents of nonproteinogenic amino acids, polyols, phytosterols, acylglycerols, mono- and oligosaccharides, glycosides, phenolic compounds (hydroquinone, kempferol), etc. This fact was consistent with the previously obtained data on the relationship between Fusarium resistance in oats (Avenasativa L.) and certain components of the metabolomic profile, such as acylglycerols, nonproteinogenic amino acids, galactinol, etc. Thus, our studies once again confirmed the possibility and effectiveness of the use of metabolomic analysis for screening the genetic diversity of accessions in the VIR collection, of Ae. tauschii in particular, in order to identify forms with a set of compounds in their metabolomic profile, which characterize them as resistant. Ae. tauschii accessions with a high content of pipecolic acids, acylglycerols, galactinol, stigmasterol, glycerol, azelaic and pyrogallic acids, campesterol, hydroquinone, etc., can be used for creating wheat and triticale cultivars with high resistance to fungal pathogens causing powdery mildew, brown rust, and yellow rust.

About the Authors

T. V. Shelenga
Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
Russian Federation

St. Petersburg



L. L. Malyshev
Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
Russian Federation

St. Petersburg



Yu. A. Kerv
Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
Russian Federation

St. Petersburg



T. V. Diubenko
Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
Russian Federation

St. Petersburg



A. V. Konarev
Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
Russian Federation

St. Petersburg



V. I. Horeva
Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
Russian Federation

St. Petersburg



M. K. Belousova
Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
Russian Federation

St. Petersburg



M. A. Kolesova
Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
Russian Federation

St. Petersburg



N. N. Chikida
Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
Russian Federation

St. Petersburg



References

1. Adonina I.G., Petrash N.V, Timonova E.M., Christov Yu.A., Sa-lina E.A. Construction and study of leaf rust resistant common wheat lines with translocations of Aegilops speltoides Tausch. genetic material. Russ. J. Genet. 2012;48:404-409. DOI 10.1134/S1022795412020020.

2. Afanasenko O.S. Problems of creating cultivars with long-term disease resistance. Zaschita i Karantin Rastenii = Plant Protection and Quarantine. 2010;3:4-10. (in Russian)

3. Arora S., Singh N., Kaur S., Bains N.S., Uauy C., Poland J., Chhu-neja P. Genome-wide association study of grain architecture in wild wheat Aegilops tauschii. Front. Plant Sci. 2017;8:886. DOI 10.3389/fpls.2017.00886.

4. Chakraborty S., Newton A.C. Climate change, plant diseases and food security: an overview. Plant Pathol. 2011;60:2-14. DOI 10.1111/j.1365-3059.2010.02411.x.

5. Dobrotvorskaia T.V, Martynov S.P., Chikida N.N., Mitrofanova O.P. Wheat cultivars and lines whose pedigrees include Ae. tauschii Coss. In: Catalogue of the VIR Global Collection. St. Petersburg, 2017;842:47. (in Russian)

6. Dorofeev V.F. Remote Hybridization and the Origin of Wheat. Leningrad, 1971. (in Russian)

7. Gilbert K. Plant Secondary Metabolism. Seigler David S. Plant Growth Regul. 2001;34(1):149-149. DOI 10.1023/A:1013354907356.

8. Gonzales-Vigil E., Bianchetti Ch.M., Phillips G.N., Jr., Howe G.A. Adaptive evolution of threonine deaminase in plant defense against insect herbivores. Proc. Natl. Acad. Sci. USA. 2011; 108(14):5897-5902. DOI 10.1073/pnas.1016157108.

9. Kolmer J.A., Anderson J.A. First detection in North America of virulence in wheat leaf rust (Puccinia triticina) to seedling plants of wheat with Lr21. Plant Dis. 2011;95:1032. DOI 10.1094/PDIS-0411-0275.21.

10. Kolomiets T.M., Pankratova L.F., Pakholkova E.V Wheat (Triti-cum L.) cultivars from GRIN collection (USA) selected for durable resistance to Septoria tritici and Stagonospora nodorum blotch. Selskokhozyaystvennaya Biologiya = Agricultural Biology. 2017;52(3):561-569. DOI 10.15389/agrobiology.2017.3.561eng.

11. Konarev A.V., Shelenga T.V., Perchuk I.N., Blinova E.V., Loskutov I.G. Characteristic of oat diversity (genus Avena L.) from the Collection of N.I. Vavilov All-Russia Research Institute of Plants: initial material for oat breeding for Fusarium resistance. Agrarnaya Rossiya = Agrarian Russia. 2015;5:2-10. DOI 10.30906/1999-5636-2015-5-2-10. (in Russian)

12. Konarev V.G. Wheat Proteins. Moscow, 1980. (in Russian)

13. Liu Y., Wang L., Mao S., Liu K., Lu Y., Wang J., Wei Y, Zheng Y Genome-wide association study of 29 morphological traits in Aegilops tauschii. Sci. Rep. 2015;5:15562. DOI 10.1038/srep15562.

14. Loskutov I.G., Shelenga T.V., Konarev A.V., Khoreva VI., Sha-varda A.L., Blinova E.V., Gnutikov A.A. Biochemical aspects of interactions between fungi and plants: a case study of Fu-sarium in oats. Selskokhozyaystvennaya Biologiya = Agricultural Biology. 2019;54(3):575-588. DOI 10.15389/agrobiology.2019.3.575eng.

15. Loskutov I.G., Shelenga T.V., Konarev A.V., Shavarda A.L., Blinova E.V., Dzubenko N.I. The metabolomic approach to the comparative analysis of wild and cultivated species of oats (Avena L.). Russ. J. Genet.: Appl. Res. 2017;7(5):501-508. DOI 10.1134/S2079059717050136.

16. McIntosh R.A., Wellings C.R., Park R.F. Wheat Rust: An Atlas of Resistance Genes. Australia: CSIRO Publ., 1995.

17. Merezhko A.F., Udachin R.A., Zuev E.V., Filatenko A.A., Ser-bin A.A., Liapunova O.A., Kosov VI., Kurkiev U.K., Okhotnikova T.V., Navruzbekov N.A., Boguslavskii R.L., Abdulaev A.K., Chikida N.N., Mitrofanova O.P., Potokina S.A. Enriching, Conserving Viable, and Studying the Global Collections of Wheat, Aegilops, and Triticale. St. Petersburg, 1999. (in Russian)

18. Migushova E.F. On the origin of wheat genomes. Trudy po Priklad-noy Botanike, Genetike i Selektsii = Proceedings on Applied Botany, Genetics, and Breeding. 1975;55(3):3-26. (in Russian)

19. Mujeeb-Kazi A., Cano S., Rosas V, Cortes A., Delgado R. Registration of five synthetic hexaploid wheat and seven bread wheat lines resistant to wheat spot blotch. Crop Sci. 2001;41(5):1653-1654. DOI 10.2135/cropsci2001.4151653x.

20. Navarova H., Bernsdorff F., Doring A.C., Zeier J. Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity. Plant Cell. 2012;24(12):5123-5141. DOI 10.1105/tpc.112.103564.

21. Pretorius Z.A. Detection of virulence to Lr41 in a South African pathotype of Puccinia recondita f. sp. tritici. Plant Dis. 1997; 81(4):423. DOI 10.1094/PDIS.1997.81.4.423A.

22. Puzanskiy R.K., Shavarda A.L., Tarakhovskaya E.R., Shishova M.F. Analysis of metabolic profile of Chlamydomonas reinhardtii cultivated under autotrophic conditions. Appl. Biochem. Microbiol. 2015;51(1):83-94. DOI 10.1134/S0003683815010135.

23. Schenck C.A., Maeda H.A. Tyrosine biosynthesis, metabolism, and catabolism in plants. Phytochemistry. 2018;149:82-102. DOI 10.1016/j.phytochem.2018.02.003.

24. Semenova L.V., Migushova E.F., Devjatkina E.P. Grain quality of Aegilops grain, ancestor of wheat. Trudy po Prikladnoy Bota-nike, Genetike i Selektsii = Proceedings on Applied Botany, Genetics, and Breeding. 1973;50(1):216-226. (in Russian)

25. Taji T., Takahashi S., Shinozaki K. Inositol and their metabolism in abiotic and biotic stress responses. Subcell. Biochem. 2006;39: 239-264. DOI 10.1007/0-387-27600-9_10.

26. Tyryshkin L.G., Kolesova M.A., Chikida N.N. Aegilops tauschii Coss. Characteristics of accessions for juvenile leaf disease resistance. In: Catalogue of the VIR Global Collection. St. Petersburg, 2004;763:3-15. (in Russian)

27. Valitova J.N., Sulkarnayeva A.G., Minibayeva F.V Plant sterols: diversity, biosynthesis, and physiological functions. Biochemistry (Moscow). 2016;81(8):819-834. DOI 10.1134/S0006297916080046.

28. Vavilov N.I. Plant Immunity to Infectious Diseases. Moscow, 1919. (in Russian)

29. Yang W.-Y., Yu Y., Zhang Y, Hu X.-R., Wang Y, Zhou Y-C., Lu B.-R. Inheritance and expression of stripe rust resistance in common wheat (Triticum aestivum) transferred from Aegilops tauschii and its utilization. Hereditas. 2003;139:49-55. DOI 10.1Ш/).1601-5223.2003.01671.x.

30. Zoeller M., Stingl N., Krischke M., Fekete A., Wallter F., Berger S. Lipid profiling of the Arabidopsis hypersensitive response reveals specific lipid peroxidation and fragmentation processes: biogenesis of pimelic and azelaic acid. Plant Physiol. 2012; 160(1):365-378. DOI 10.1104/pp.112.202846.


Review

Views: 853


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)