Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Concentration of viruses and electron microscopy

https://doi.org/10.18699/VJ20.620

Abstract

Nearly all lethal viral outbreaks in the past two decades were caused by newly emerging viruses. Viruses are often studied by electron microscopy (EM), which provides new high-resolution data on the structure of viral particles relevant to both fundamental virology and practical pharmaceutical nanobiotechnology. Electron microscopy is also applied to ecological studies to detect viruses in the environment, to analysis of technological processes in the production of vaccines and other biotechnological components, and to diagnostics. Despite the advances in more sensitive methods, electron microscopy is still in active use for diagnostics. The main advantage of EM is the lack of specificity to any group of viruses, which allows working with unknown materials. However, the main limitation of the method is the relatively high detection limit (107 particles/mL), requiring viral material to be concentrated. There is no most effective universal method to concentrate viruses. Various combinations of methods and approaches are used depending on the virus and the goal. A modern virus concentration protocol involves precipitation, centrifugation, filtration, and chromatography. Here we describe the main concentrating techniques exemplified for different viruses. Effective elution techniques are required to disrupt the bonds between filter media and viruses in order to increase recovery. The paper reviews studies on unique traps, magnetic beads, and composite polyaniline and carbon nanotubes, including those of changeable size to concentrate viral particles. It also describes centrifugal concentrators to concentrate viruses on a polyethersulfone membrane. Our review suggests that the method to concentrate viruses and other nanoparticles should be chosen with regard to objectives of the study and the equipment status of the laboratory.

About the Authors

I. D. Petrova
State Research Center of Virology and Biotechnology “Vector", Rospotrebnadzor
Russian Federation

Koltsovo, Novosibirsk region



B. N. Zaitsev
State Research Center of Virology and Biotechnology “Vector", Rospotrebnadzor
Russian Federation

Koltsovo, Novosibirsk region



O. S. Taranov
State Research Center of Virology and Biotechnology “Vector", Rospotrebnadzor
Russian Federation

Koltsovo, Novosibirsk region



References

1. Abbaszadegan M., Alum A., Abbaszadegan H., Stout V Cell surface display of poliovirus receptor on Escherichia coli, a novel method for concentrating viral particles in water. Appl. Environ. Microbiol. 2011;77(15):5141-5148.

2. Ali A., Roossinck M.J. A simple technique for separation of Cow-pea chlorotic mottle virus from Cucumber mosaic virus in natural mixed infections. J. Virol. Methods. 2008;153:163-167.

3. Alonso M.C., Rodriquez J., Borrego J.J. Enumeration and isolation of viral particles from oligotrophic marine environments by tangential flow filtration. Int. Microbiol. 1999;2(4):227-232.

4. Bakhutashvili T.O., Gusev A.A., Dudnikov A.I., Mikhalishin V V, Shipilov V.I. A Method for Concentrating Viruses. Patent RF № 1834289, 2002. (in Russian)

5. Barth H.G., Jackson С., Boyes В.Е. Size exclusion chromatography. Anal. Chem. 1994;66(12):595-620.

6. Beniac D.R., Siemens C.G., Wright C.J., Booth T.F. A filtration based technique for simultaneous SEM and TEM sample preparation for the rapid detection of pathogens. Viruses. 2014;6: 3458-3471. DOI 10.3390/v6093458.

7. Burova E., Loffe Е. Chromatographic purification of recombinant adenoviral and adeno-associated viral vectors: methods and implications. Gene Ther. 2005;12:5-17.

8. Dong H., Xiao K., Li X., Ren Y, Guo S. Preparation of PVDF/ Al2O3 hybrid membrane via the sol-gel process and characterization of the hybrid membrane. Desalin. Water Treat. 2013; 51(19-21):3685-3690.

9. Doodeji M.S., Zerafat M.M. A review on the applications of nano filtration in virus removal and pharmaceutical industries. Glob. J. Nanomed. 2018;3(5):555624. DOI 10.19080/GJN.2018.03.555624.

10. Falman J.C., Fagnant-Sperati C.S., Kossik A.L., Boyle D.S., Me-schke J.S. Evaluation of secondary concentration methods for poliovirus detection in wastewater. Food Environ. Virol. 2019; 11(1):20-31.

11. Flavigny E., Gaboyard M., Merel P., Fleury H. Magnetic particle-mediated virus concentration for clinical virology. In: 104th General Meeting of the American Society for Microbiology, New Orleans, American Society for Microbiology. May 22-27, 2004. Washington, DC, 2004.

12. Gentile M., Gelderblom H.R. Electron microscopy in rapid viral diagnosis: an update. New Microbiol. 2014;37:403-422.

13. Ghaee A., Zerafat M.M., Askari P., Sabbaghi S., Sadatnia B. Fabrication of polyamide thin-film nanocomposite membranes with enhanced surface charge for nitrate ion removal from water resources. Environ. Technol. 2017;38(6):772-781.

14. Gias E., Nielsen S.U., Morgan L.A.F., Toms G.L. Purification of human respiratory syncytial virus by ultracentrifugation in iodixanol density gradient. J. Virol. Methods. 2008;147(2):328-332.

15. Goldsmith C.S., Miller S.E. Modern uses of electron microscopy for detection of viruses. Clin. Microbiol. Rev. 2009;552-563.

16. Gutierrez-Aguirre I., Banjac M., Steyer A., Poljsak-Prijatelj M., Peterka M., Strancar A., Ravnikar M. Concentrating rotaviruses from water samples using monolithic chromatographic supports. J. Chromatogr. 2009;1216(13):2700-2704.

17. Havlik M., Marchetti-Deschmann M., Friedbacher G., Messner P., Winkler W., Perez-Burgos L., Tauer C., Allmaier C. Development of a bio-analytical strategy for characterization of vaccine particles combining SEC and nanoES GEMMA. Analyst. 2014; 139(6):1412-1419.

18. Hazelton P.R., Gelderblom H.R. Electron microscopy for rapid diagnosis of infectious agents in emergent situations. Emerg. Infect. Dis. 2003;9:294-303.

19. Ikner L.A., Gerba C., Bright K. Concentration and recovery of viruses from water: a comprehensive review. Food Environ. Virol. 2012;4(2):41-67.

20. Ismagambetov B.M., Koshemetov Zh.K., Bogdanova M.I., Na-khanova G.D., Nurabaev S.Sh., Seysenbaeva M.S., Sansyz-bai A.R., Kasenov M.M. Design of diagnostic products for influenza A subtypes. Mezhdunarodnyy Zhurnal Prikladnykh i Fundamental’nykh Issledovaniy. Seriya Biologicheskie Nauki = International Journal of Applied and Fundamental Research. Biological Series. 2017;10:260-264. (in Russian)

21. Ivanova V.T., Ivanova M.V., Sapurina I.Yu., Burtseva E.I., Trusha-kova S.V., Isaeva E.I., Kirillova E.S., Stepanova N.V., Oskerko T.A. A comparative study of carbon nanotubes and polymer composites containing silver nanoparticles as sorbents of influenza viruses A and B. Voprosy Virusologii = Problems of Virology. 2015;60(3):25-30. (in Russian)

22. Ko S.-M., Cho S.-Y, Oh M.-J., Vaidya B., Kim D. Application of concanavalin A-linked magnetic beads for the detection of hepatitis A virus. J. Food Prot. 2018;81(12):1997-2002.

23. Krajacic M., Ravnikar M., Strancar A., Gutierrez-Aguirre I. Application of monolithic chromatographic supports in virus research. Electrophoresis. 2017;38:22-23.

24. Kyzin A.A., Zagidullin N.V., Gelich L.V., Timerbaeva R.H., Isra-filov A.G. Purification and concentration of influenza virus by micro- and ultrafiltration. Vestnik Bashkirskogo Universiteta = Bulletin of Bashkir University. 2014;19(4):1223-1227. (in Russian)

25. Levchenko I.V., Efremenko VI., L’vov D.K., Zharnikova I.V., Deryabin P.G., Vasilenko N.F., Isaeva E.I., Botikov A.V. Development of magneto-immunosorbent test systems and a device for selective concentration for the detection of avian influenza viruses. Proceedings of the 9th Congress of the All-Russia Research and Practical Society of Epidemiologists, Microbiologists, and Parasitologists. Moscow, 2007;1:248-249. (in Russian)

26. Lozinskiy V.I., Plieva F.M., Isaeva E.I., Zubov A.L. A Method of Concentrating Virus. Patent, 2013. Available at: http://www.findpatent.ru/patent/213/2130069.html. (in Russian)

27. Lu R., Li Q., Yin Z., Xagoraraki I., Tarabara V., Nguyen T. Effect of virus influent concentration on its removal by microfiltration: The case of human adenovirus 2. J. Membr. Sci. 2016;497: 120-127.

28. Maximous N., Nakhla G., Wan W., Wong K. Preparation, characterization and performance of Al2O3/PES membrane for wastewater filtration. J. Membr. Sci. 2009;341(1-2):67-75.

29. Mogi K., Hayashida K., Honda A., Yamamoto T. Development of virus concentration device by controlling ion depletion zone for ultra-sensitive virus sensing. Trans. Sens. Micromachines. 2016; 136(9):363-369.

30. Reid G.G., Milne E.W., Coggins L.W., Wilson N.J., Smith K.T., Shepherd A.J. Comparison of electron microscopic techniques for enumeration of endogenous retrovirus in mouse and Chinese hamster cell line used for production of biologics. J. Virol. Methods. 2003;108:91-96.

31. Roettger B.F., Myers J.A., Ladisch M.R., Regnier F.E. Аdsorption phenomena in hydrophobic interaction chromatography. Bio-technol. Prog. 1989;5(3):79-88.

32. Ruscic J., Gutierrez-Aguirre I., Znidaric M.T., Kolundzija S., Sla-na A., Barut M., Ravnikar M., Krajacic M. A new application of monolithic supports: The separation of viruses from one another. J. Chromatogr. A. 2015;1388:69-78.

33. Ryabinnikova A.I., Matraimov M.B., Shalgynbaev E.K., Rysta-eva R.A., Orynbaev M.B. Purification and concentration of horses rhinopneumonia virus. Nauka, Novye Tekhnologii i In-novatcii Kyrgyzstana = Science, New Technologies, and Innovations in Kyrgyzstan. 2015;4:129-131. (in Russian)

34. Sakudo A., Baba K., Ikuta K. Capturing and concentrating adenovirus using magnetic anionic nanobeads. Int. J. Nanomedicine. 2016;11:1847-1857.

35. Sakudo A., Baba K., Tsukamoto M., Ikuta K. Use of anionic polymer, poly(methyl vinyl ether-maleic anhydride)-coated beads for capture of respiratory syncytial virus. Bioorg. Med. Chem. Lett. 2009a;19(15):4488-4491.

36. Sakudo A., Baba K., Tsukamoto M., Sugimoto A., Okada T., Ko-bayashi T., Kawashita N., Takagi T., Ikuta K. Anionic polymer, poly(methyl vinyl ether-maleic anhydride)-coated beads-based capture of human influenza A and B virus. Bioorg. Med. Chem. 2009b;17(2):752-757.

37. Sakudo A., Ikuta K. Efficient capture of infectious H5 avian influenza virus utilizing magnetic beads coated with anionic polymer. Biochem. Biophys. Res. Commun. 2008;377(1):85-88.

38. Sakudo A., Ikuta K. A technique for capturing broad subtypes and circulating recombinant forms of HIV-1 based on anionic polymer-coated magnetic beads. Int. J. Mol. Med. 2012;30(2): 437-442.

39. Sakudo A., Masrinoul P., Tanaka Y, Ikuta K. Capture of dengue virus type 3 using anionic polymer-coated magnetic beads. Int. J. Mol. Med. 2011a;28(4):625-628.

40. Sakudo A., Tanaka Y., Ikuta K. Capture of infectious borna disease virus using anionic polymer-coated magnetic beads. Neurosci. Lett. 2011b;494(3):237-239.

41. Sanamyan A.G., Dmitrieva R.A., Doskina T.V., Lavrova D.V, Ne-dachin A.E. Use of a membrane module MPM 0142 for the concentration of viruses in the sanitary-virological surveillance of water objects. Gigiena i Sanitariya = Hygiene and Sanitation. 2006;6:74-76. (in Russian)

42. Schagen F.H.E., Rademaker H.J., Rabelink M., van Ormondt H., Fallaux F.J., van der Eb A.J., Hoeben R.C. Ammonium sulphate precipitation of recombinant adenovirus from culture medium: an easy method to increase the fetal virus yield. Gene Ther. 2000;7(18):1570-1574.

43. Segura M.M., Garnier А., Kamen А. Purification and characterization of retrovirus vector particles by rate zonal ultracentrifugation. J. Virol. Methods. 2006;133(1):82-91.

44. Sheets R.L. Opinion on adventitious agents testing for vaccines: Why do we worry so much about adventitious agents in vaccines? Vaccine. 2013;31(26):2791-2795.

45. Soto-Beltran M., Ikner L.A., Bright K.R. Effectiveness of poliovirus concentration and recovery from treated wastewater by two electropositive filter methods. Food Environ. Virol. 2013;5: 91-96.

46. Sun G., Xiao J., Wang H., Gong C., Pan U., Yan S., Wang Y Efficient purification and concentration of viruses from a large body of high turbidity seawater. MethodsX. 2014;1:197-206. DOI 10.1016/j.mex.2014.09.001.

47. Svec F., Perry G. Wang (Ed.). Monolithic chromatography and its modern applications. Anal. Bioanal. Chem. 2011;401:1459-1460. https://doi.org/10.1007/s00216-011-5175-0.

48. Tarasov A.V., Fedotov Yu.A., Lepeshin S.A., Panov Yu.T., Oku-lov K.V., Vdovina A.I. The use of membranes with a positive surface charge for sanitary and virological control of water. Iz-vestiya Samarskogo Nauchnogo Tsentra Rossiyskoy Akademii Nauk = Proceedings of the Samara Research Center of the Russian Academy of Sciences. 2012;14(1-9):2372-2376. (in Russian)

49. Taylakova E.T., Chervyakova O.V., Sadikalieva S.O., Sultanku-lova K.T., Zaytsev V.L., Turganbaeva A.S., Sansyzbay A.R. Optimization of conditions for purification and concentration of equine influenza virus. Vestnik Nauki KazATU imeni S. Sejful-lina = Herald of Science of the Saken Seifullin Kazakh AgroTechnical University. 2011;4(71):14-23. (in Russian)

50. Transfiguracion J., Jorio H., Meghrous J., Jacob D., Kamen A. High yield purification of functional baculovirus vectors by size exclusion chromatography. J. Virol. Methods. 2007;142(1-2):21-28.

51. Trifonova E.A., Nikitin N.A., Kirpichnikov M.P., Karpova O.V., Atabekov I.G. A method of production and characterization of spherical particles, new biogenic platforms. Vestnik Moskov-skogo Universiteta. Seriya 16. Biology = Moscow University Bulletin. Series 16. Biology. 2015;4:46-50. (in Russian)

52. Vicente T., Roldao A., Peixoto C., Carrondo M.J.T., Alves P.M. Large-scale production and purification of VLP-based vaccines. J. Invertebr. Pathol. 2011;107:42-48.

53. Wickramasinghe S.R., Kalbfuss B., Zimmermann A., Thom V, Reichl U. Tangential flow microfiltration and ultrafiltration for human influenza A virus concentration and purification. Biotech-nol. Bioeng. 2005;92(2):199-208.

54. Yeh Y.T., Tang Y, Sebastian A., Dasgupta A., Perea-Lopez N., Albert I., Lu H., Terrones M., Zeng C.-Y Tunable and label-free virus enrichment for ultrasensitive virus detection using carbon nanotube arrays. Sci. Adv. 2016;2(10):e1601026. DOI 10.1126/sciadv.1601026.

55. Yousefi M.H., Zerafat M.M., Shokri-Doodeji M.D., Sabbaghi S. Investigation of dip-coating parameters effect on the performance of Alumina-Polydimethylsiloxane nanofiltration membranes for desalination. J. Water Environ. Nanotechnol. 2017; 2(4):235-242.

56. Zajtsev B.N., Taranov O.S., Rudometova N.B., Shcherbakova N.S., Il’ichev А.А., Karpenko L.I. Optimized method for counting viral particles using electron microscopy. Vavilovskii Zhurnal Ge-netiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2019;23(3):237-242. DOI 10.18699/VJ19.498. (in Russian)

57. Zajtsev VP., Zolotykh D.S., Leonova V.D., Larskaya K.S., Krat I.P., Orobinskaya V.N., Konovalov D.A. The nanoparticles: methods of preparation and analysis, activity, and toxicity. Sovremennaya Nauka i Innovatsii = Modern Science and Innovation. 2016; 3(15):197-218. (in Russian)

58. Zalesskih A.A., Bystrova T.N. Improvement of the hepatitis A epidemiological surveillance system based on the optimization of vi-rological and serological monitoring. Meditsinskiy Al’manakh = Medical Almanac. 2018;4(55):70-74. DOI 10.21145/2499-9954-2018-4-70-74. (in Russian)


Review

Views: 1435


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)