Preview

Vavilov Journal of Genetics and Breeding

Advanced search

In vitro assay of biological activity of a national preparation of macrophage activating factor (GcMAF-RF)

https://doi.org/10.18699/VJ20.621

Abstract

The article reports an original method for producing vitamin D3-binding protein (DBP) and its conversion into macrophage-activating factor GcMAF-RF. According to an original protocol, DBPs were obtained from human blood plasma using affinity chromatography, purified and modified to GcMAF-RF using cytoimmobilized glycosidases (beta-galactosidase and neuraminidase). The presence of the polypeptide obtained in the Gc group of blood plasma globulins was confirmed by Western blot using specific antibodies. The molecular properties of this polypeptide put it in correspondence with the GcMAF protein described in the literature, which is undergoing clinical trials in the USA, Britain, Israel and Japan (at Saisei Mirai; Reno Integrative Medical Center; Immuno Biotech Ltd; Efranat; and Catalytic Longevity). The biological activity of the GcMAF-RF preparation was detected by the induction of phagocytic activity of macrophages and their ability to produce nitrogen monoxide (NO) in vitro.The phagocytic activity of macrophages was evaluated by their ability to uptake magnetic beads. The degree of activation of macrophages was calculated by the ratio of trapped beads to the total number of macrophages. The level of NO production was estimated by the accumulation of nitrogen monoxide in the culture supernatants of peritoneal macrophages by the colorimetric method using the Griess reagent. It was shown that GcMAF-RF multiplies the phagocytic activity of macrophages and significantly increases their production of nitrogen monoxide. The macrophage activator GcMAF-RF, according to its characteristics, corresponds to similar preparations which are made available to the market by foreign companies, and can be considered as a new biologically active preparation with a wide spectrum of action. Of greatest interest is its ability - through the activation of macrophages - to enhance the adaptive immunity. In this regard, two areas of therapeutic use of the GcMAF-RF are proposed. The preparation will be in demand in the field of cancer treatment, and, in addition, it can be used in the treatment of a number of neurodegenerative pathologies.

About the Authors

E. V. Levites
Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



S. S. Kirikovich
Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



E. V. Dolgova
Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



A. S. Proskurina
Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



G. S. Ritter
Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Russian Federation

Novosibirsk



А. A. Ostanin
Institute of Fundamental and Clinical Immunology
Russian Federation

Novosibirsk



E. R. Chernykh
Institute of Fundamental and Clinical Immunology
Russian Federation

Novosibirsk



S. S. Bogachev
Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



References

1. Grjibovsky А.М. Analysis of three and more independent groups of quantitative data. Ekologiya Cheloveka = Human Ecology. 2008; 3:50-58. (in Russian)

2. Ostanin A.A., Kirikovich S.S., Dolgova E.V., Proskurina A.S., Chernykh E.R., Bogachev S.S. A thorny pathway of macrophage activating factor (GcMAF): from bench to bedside. Vavilovskii Zhur-nal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2019;23(5):624-631. DOI 10.18699/VJ19.535. (in Russian)

3. Asaoka Y., Ota M., Yoshida K., Sasaki Y., Nishizuka Y. Role of ly-sophosphatidylcholine in T-lymphocyte activation: involvement of phospholipase A2 in signal transduction through protein kinase C. Proc. Natl. Acad. Sci. USA. 1992;89(14):6447-6451. DOI 10.1073/pnas.89.14.6447.

4. Borges C.R., Rehder C.R. Glycan structure of Gc protein-derived macrophage activating factor as revealed by mass spectrometry. Arch. Biochem. Biophys. 2016;606:167-179. DOI 10.1016/j.abb.2016.08.006.

5. Cassetta L., Cassol E., Poli G. Macrophage polarization in health and disease. Sci. World J. 2011;11:2391-2402. DOI 10.1100/2011/213962.

6. Delanghe J.R., Speeckaert R., Speeckaert M.M. Behind the scenes of vitamin D binding protein: more than vitamin D binding. Best Pract. Res. Clin. Endocrinol. Metab. 2015;29(5):773-786. DOI 10.1016/j.beem.2015.06.006.

7. de Souza M.G., Grossi A.L., Pereira E.L., da Cruz C.O., Mendes F.M., Cameron L.C., Paiva C.L. Actin immobilization on chitin for purifying myosin II: a laboratory exercise that integrates concepts of molecular cell biology and protein chemistry. Biochem. Mol. Biol. Educ. 2008;36(1):55-60. DOI 10.1002/bmb.122.

8. Gordon S. Alternative activation of macrophages. Nat. Rev. Immunol. 2003;3(1):23-35. DOI 10.1038/nri978.

9. Green L.C., Wagner D.A., Glogowski J., Skipper P.L., Wishnok J.S., Tannenbaum S.R. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal. Biochem. 1982;126(1):131-138. DOI 10.1016/0003-2697(82)90118-x.

10. Greilberger J., Herwig R. Vitamin D - deglycosylated vitamin D-bind-ing protein dimer: positive synergistic effects on recognition, activation, phagocytosis and oxidative stress on macrophages. Clin. Lab. 2020;66(1):169-177. DOI 10.7754/Clin.Lab.2019.191121.

11. Haddad J.G., Kowalski M.A., Sanger J.W. Actin affinity chromatography in the purification of human, avian and other mammalian plasma proteins binding vitamin D and its metabolites (Gc globulins). Biochem. J. 1984;218(3):805-810. DOI 10.1042/bj2180805.

12. Hammarstrom S., Kabat E.A. Studies on specificity and binding properties of the blood group A reactive hemagglutinin from Helix pomatia. Biochemistry. 1971;10(9):1684-1692. DOI 10.1021/bi00785a028.

13. Inui T., Amitani H., Kubo K., Kuchike D., Uto Y., Nishikata T., Mette M. Case report: a non-small cell lung cancer patient treated with GcMAF, sonodynamic therapy and tumor treating fields. Anticancer Res. 2016a;36:3767-3770. PMID: 27354652.

14. Inui T., Katsuura G., Kubo K., Kuchiike D., Chenery L., Uto Y., Nishikata T., Mette M. Case report: GcMAF treatment in a patient with multiple sclerosis. Anticancer Res. 2016b;36:3771-3774. PMID: 27354653.

15. Inui T., Kuchiike D., Kubo K., Mette M., Uto Y., Hori H., Sakamoto N. Clinical experience of integrative cancer immunotherapy with GcMAF. Anticancer Res. 2013;33(7):2917-2919. PMID: 23780980.

16. Ioannou Y.A., Bishop D.F., Desnick R.J. Overexpression of human alpha-galactosidase A results in its intracellular aggregation, crystallization in lysosomes, and selective secretion. J. Cell Biol. 1992; 119:1137-1150. DOI 10.1083/jcb.119.5.1137.

17. Ishikawa M., Inoue T., Inui T., Kuchiike D., Kubo K., Uto Y., Nishi-kata T. A novel assay system for macrophage-activating factor activity using a human U937 cell line. Anticancer Res. 2014;34(8): 4577-4581. PMID: 25075102.

18. Kisker O., Onizuka S., Becker C.M., Fannon M., Flynn E., D’Amato R., Zetter B., Folkman J., Ray R., Swamy N., Pirie-Shepherd S. Vitamin D binding protein-macrophage activating factor (DBP-maf) inhibits angiogenesis and tumor growth in mice. Neoplasia. 2003; 5(1):32-40. DOI 10.1016/S1476-5586(03)80015-5.

19. Klokol D., Teppone M. Management of metastatic colorectal carcinoma with GcMAF Forte and thymus peptides: a case report. J. Clin. Cell. Immunol. 2016;7:4. DOI 10.4172/2155-9899.1000449.

20. Korbelik M., Naraparaju V.R., Yamamoto N. Macrophage-directed immunotherapy as adjuvant to photodynamic therapy of cancer. Br. J. Cancer. 1997;75(2):202-207. DOI 10.1038/bjc.1997.34.

21. Korbelik M., Naraparaju V.R., Yamamoto N. The value of serum a-N-acetylgalactosaminidase measurement for the assessment of tumour response to radio- and photodynamic therapy. Br. J. Cancer. 1998; 77:1009-1014. DOI 10.1038/bjc.1998.166.

22. Kuchiike D., Uto Y., Mukai H., Ishiyama N., Abe C., Tanaka D., Kawai T., Kubo K., Mette M., Inui T., Endo Y., Hori H. Degalacto-sylated/desialylated human serum containing GcMAF induces macrophage phagocytic activity and in vivo antitumor activity. Anticancer Res. 2013;33(7):2881-2885. PMID: 23780974.

23. Lamagna C., Aurrand-Lions M., Imhof B.A. Dual role of macrophages in tumor growth and angiogenesis. J. Leukoc. Biol. 2006;80(4):705-713. DOI 10.1189/jlb.1105656.

24. Link R.P., Perlman K.L., Pierce E.A., Schnoes H.K., DeLuca H.F. Purification of human serum vitamin D-binding protein by 25-hydro-xyvitamin D3-Sepharose chromatography. Anal. Biochem. 1986; 157(2):262-269. DOI 10.1016/0003-2697(86)90624-x.

25. Malik S., Fu L., Juras D.J., Karmali M., Wong B.Y., Gozdzik A., Cole D.E. Common variants of the vitamin D binding protein gene and adverse health outcomes. Crit. Rev. Clin. Lab. Sci. 2013;50(1): 1-22. DOI 10.3109/10408363.2012.750262.

26. Matsuura T., Uematsu T., Yamaoka M., Furusawa K. Effect of salivary gland adenocarcinoma cell-derived a-N-acetylgalactosaminidase on the bioactivity of macrophage activating factor. Int. J. Oncol. 2004; 24(3):521-528. DOI 10.3892/ijo.24.3.521.

27. Mohamad S.B., Nagasawa H., Uto Y., Hori H. Preparation of Gc protein-derived macrophage activating factor (GcMAF) and its structural characterization and biological activities. Anticancer Res. 2002; 22(6C):4297-4300. PMID: 12553073.

28. Mosser D.M. The many faces of macrophage activation. J. Leukoc. Biol. 2003;73(2):209-212. DOI 10.1189/jlb.0602325.

29. Moya R., Chan M.K.S., Klokol D., Pan S.Yi. Active specific immunotherapy (ASI) and GcMAF Forte in management of metastatic invasive carcinoma - overview of the therapeutic modalities and a case report. J. Clin. Exp. Immunol. 2018;3(2):1-4.

30. Murray P.J., Wynn T.A. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 2011;11:723-737. DOI 10.1038/nri3073.

31. Nagasawa H., Uto Y., Sasaki H., Okamura N., Murakami A., Kubo S., Kirk K.L., Hori H. Gc protein (vitamin D-binding protein): Gc ge-notyping and GcMAF precursor activity. Anticancer Res. 2005;25: 3689-3696. PMID: 16302727.

32. Naraparaju V.R., Yamamoto N. Roles of P-galactosidase of B lymphocytes and sialidase of T lymphocytes in inflammation-primed activation of macrophages. Immunol. Lett. 1994;43(3):143-148. DOI 10.1016/0165-2478(94)90214-3.

33. Ngwenya B.Z., Yamamoto N. Effects of inflammation products on immune systems. Lysophosphatidylcholine stimulates macrophages. Cancer Immunol. Immunother. 1986;21(3):174-182. DOI 10.1007/bf00199358.

34. Pacini S., Punzi T., Morucci G., Gulisano M., Ruggiero M. Effects of vitamin D-binding protein-derived macrophage-activating factor on human breast cancer cells. Anticancer Res. 2012;32(1):45-52. PMID: 22213287.

35. Paduraru D.N., Bouariu A., Ion D., Andronic O., Dumitrascu M.C., Bolocan A. Considerations regarding GcMAF treatement in breast cancer. Rom. Biotechnol. Lett. 2019;24(5):851-855. DOI 10.25083/rbl/24.5/851.855.

36. Rehder D.S., Nelson R.W., Borges C.R. Glycosylation status of vitamin D binding protein in cancer patients. Protein Sci. 2009;18(10): 2036-2042. DOI 10.1002/pro.214.

37. Ruggiero M., Reinwald H., Pacini S. Is chondroitin sulfate responsible for the biological effect attributed to the GC protein-derived Macrophage Activating Factor (GcMAF)? Med. Hypotheses. 2016;94: 126-131. DOI 10.1016/j.mehy.2016.07.012.

38. Ruggiero M., Ward E., Smith R., Branca J.J., Noakes D., Morucci G., Taubmann M., Thyer L., Pacini S. Oleic acid, deglycosylated vitamin D-binding protein, nitric oxide: a molecular triad made lethal to cancer. Anticancer Res. 2014;34(7):3569-3578. PMID: 24982371.

39. Saburi E., Saburi A., Ghanei M. Promising role for Gc-MAF in cancer immunotherapy: from bench to bedside. Caspian J. Intern. Med. 2017a;8(4):228-238. DOI 10.22088/cjim.8.4.228.

40. Saburi E., Tavakol-Afshari J., Biglari S., Mortazavi Y. Is a-N-acetyl-galactosaminidase the key to curing cancer? A mini-review and hypothesis. JBUON. 2017b;22(6):1372-1377. PMID: 29332325.

41. Sica A., Bronte V. Altered macrophage differentiation and immune dysfunction in tumor development. J. Clin. Invest. 2007;117(5):1155-1166. DOI 10.1172/JCI31422.

42. Smith R., Thyer L., Ward E., Meacci E., Branca J.J.V., Morucci G., Gu-lisano M., Ruggiero M., Pacini A., Paternostro F., Mannelli L.D.C., Noakes D.J., Pacini S. Effects of Gc-macrophage activating factor in human neurons; implications for treatment of chronic fatigue syndrome. Am. J. Immunol. 2013;9(4):120-129. DOI 10.3844/ajisp.2013.120.129.

43. Spudich J.A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J. Biol. Chem. 1971;246(15):4866-4871. PMID: 4254541.

44. Swamy N., Ray R. 25-Hydroxy[26,27-methyl-3H]vitamin D3-3P-(1,2-epoxypropyl)ether: an affinity labeling reagent for human vitamin D-binding protein. Arch. Biochem. Biophys. 1995;319(2):504-507. DOI 10.1006/abbi.1995.1323.

45. Thyer L., Ward E., Smith R., Branca J.J., Morucci G., Gulisano M., Noakes D., Eslinger R., Pacini S. GC protein-derived macrophageactivating factor decreases a-N-acetylgalactosaminidase levels in advanced cancer patients. Oncoimmunology. 2013a;2(8):e25769. DOI 10.4161/onci.25769.

46. Thyer L., Ward E., Smith R., Fiore M.G., Magherini S., Branca J.J., Morucci G., Gulisano M., Ruggiero M., Pacini S. A novel role for a major component of the vitamin D axis: vitamin D binding protein-derived macrophage activating factor induces human breast cancer cell apoptosis through stimulation of macrophages. Nutrients. 2013b;5(7):2577-2589. DOI 10.3390/nu5072577.

47. Toyohara Y., Hashitani S., Kishimoto H., Noguchi K., Yamamoto N., Urade M. Inhibitory effect of vitamin D-binding protein-derived macrophage activating factor on DMBA-induced hamster cheek pouch carcinogenesis and its derived carcinoma cell line. Oncol. Lett. 2011;2(4):685-691. DOI 10.3892/ol.2011.306.

48. Ugarte A., Bouche G., Meheus L. Inconsistencies and questionable reliability of the publication “Immunotherapy of metastatic colorectal cancer with vitamin D-binding protein-derived macrophages-acti-vating, GcMAF” by Yamamoto et al. Cancer Immunol. Immunother. 2014;63(12):1347-1348. DOI 10.1007/s0262-014-1587-y.

49. Yamamoto N. Structural definition of a potent macrophage activating factor derived from vitamin D3-binding protein with adjuvant activity for antibody production. Mol. Immunol. 1996;33:1157-1164. PMID: 8360493.

50. Yamamoto N., Homma S. Vitamin D3 binding protein (group-specific component) is a precursor for the macrophage-activating signal factor from lysophosphatidylcholine-treated lymphocytes. Proc. Natl. Acad. Sci. USA. 1991;88(19):8539-8543. DOI 10.1073/pnas. 88.19.8539.

51. Yamamoto N., Kumashiro R. Conversion of vitamin D3 binding protein (group-specific component) to a macrophage activating factor by the stepwise action of beta-galactosidase of B cells and sialidase of T cells. J. Immunol. 1993;151(5):2794-2802. PMID: 8360493.

52. Yamamoto N., Naraparaju V.R., Asbell S.O. Deglycosylation of serum vitamin D3-binding protein leads to immunosuppression in cancer patients. Cancer Res. 1996;56(12):2827-2831. PMID: 8665521.

53. Yamamoto N., Suyama H., Yamamoto N. Immunotherapy for prostate cancer with Gc protein-derived macrophage-activating factor, GcMAF. Transl. Oncol. 2008;1(2):65-72. DOI 10.1593/tlo.08106.


Review

Views: 1653


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)