Коллекция ризосферных микроорганизмов: значение для исследования растительно-бактериальной ассоциативности
https://doi.org/10.18699/VJ20.623
Аннотация
Коллекции микроорганизмов - один из важнейших компонентов биологической науки, который обеспечивает исследователей необходимым материалом и сохраняет биологические ресурсы. Таковой является Коллекция ризосферных микроорганизмов Института биохимии и физиологии растений и микроорганизмов Российской академии наук (ИБФРМ РАН), деятельность которой сосредоточена в первую очередь на выделении и сохранении микроорганизмов, выделенных из корневой зоны растений. Интерес мировой науки к микроорганизмам этой экологической ниши не ослабевает по причине их большой значимости для роста и развития растений и, следовательно, для растениеводства. Группа бактерий, обладающих полезными для растений свойствами, получила название PGPR (plant growth promoting rhizo-bacteria - стимулирующие рост растений ризобактерии). К ним относятся и почвенные азотфиксирующие альфа-протеобактерии рода Azospirillum, составляющие ядро вышеназванной коллекции. Азоспириллы, открытые в 70-х гг. прошлого века бразильскими учеными, в настоящее время являются признанными во всем мире модельными объектами для изучения молекулярных механизмов растительно-микробных взаимодействий. Фиксация атмосферного азота, продукция фитогормонов, солюбилизация фосфатов, контроль патогенов, формирование у растений индуцированной системной устойчивости - целый комплекс полезных свойств делает их универсальным инструментом для фундаментальных исследований и практического применения. В обзоре обсуждается современное состояние исследований по бактериям рода Azospirillum с акцентом на результатах, полученных коллективом ИБФРМ РАН (г. Саратов). Экспедиции по Саратовской области, проведенные микробиологами института в начале 1980-х гг., заложили основу уникального собрания представителей этого бактериального таксона, которое сегодня включает более 160 штаммов и считается одним из самых крупных в Европе. Исследования сотрудников ИБФРМ РАН преимущественно сосредоточены на структурах азоспирилл, вовлеченных в образование ассоциативного симбиоза с растениями. Прежде всего это внеклеточные полисахаридсодержащие комплексы и лектины. Развитие методов иммунохимии во многом позволило выяснить, как в целом организована поверхность бактерий. Благодаря изучению генома азоспирилл существенно углубилось понимание роли вышеупомянутых структур, а также подвижности бактерий и формирования ими биопленок при заселении корней. В прикладном аспекте заслуживают внимания исследования азоспирилл, направленные на развитие агро- и экотехнологий, а также технологии «зеленого» синтеза наночастиц золота, серебра и селена. Коллекция продолжает развиваться, пополняясь новыми штаммами, показывая большое значение специализированных собраний микроорганизмов для создания и поддержания исследовательской базы и эффективного решения фундаментальных и прикладных задач микробиологии.
Об авторах
О. В. ТурковскаяРоссия
Саратов
С. Н. Голубев
Россия
Саратов
Список литературы
1. Alen’kina S.A., Bogatyrev VA., Matora L.Yu., Sokolova M.K., Chernysheva M.P., Trutneva K.A., Nikitina V.E. Signal effects of the lectin from the associative nitrogen-fixing bacterium Azospirillum brasilense Sp7 in bacterial-plant root interactions. Plant Soil. 2014;381(1-2):337-349. https://doi.org/10.1007/s11104-014-2125-6.
2. Alen’kina S.A., Payusova O.A., Nikitina V.E. Effect of Azospirillum lectins on the activities of wheat-root hydrolytic enzymes. Plant Soil. 2006;283(1-2):147-151. https://doi.org/10.1007/s11104-005-4890-8.
3. Anandham R., Heo J., Krishnamoorthy R., SenthilKumar M., Gopal N.O., Kim S.J., Kwon S.-W. Azospirillum ramasamyi sp. nov., a novel diazotrophic bacterium isolated from fermented bovine products. Int. J. Syst. Evol. Microbiol. 2019;69(5):1369-1375. https://doi.org/10.1099/ijsem.0.003320.
4. Baldani J.I., Videira S.S., Teixeira K.R.S., Reis V.M., de Oliveira A.L.M., Schwab S., de Souza E.M., Pedraza R.O., Baldani V.L.D., Hartmann A. The Family Rhodospirillaceae. In: Rosenberg E., DeLong E.F., Lory S., Stackebrandt E., Thompson F. (Eds.). The Prokaryotes: Alphaproteobacteria and Betaproteobacteria. Fourth Edn. Berlin: Heidelberg, 2014; 533-618.
5. Bashan Y, Holguin G., de-Bashan L.E. Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997-2003). Can. J. Microbiol. 2004;50(8):521-577. https://doi.org/10.1139/w04-035.
6. Beijerinck M.W. Uber ein Spirillum, welches freien Stickstoff bin-den kann? Zentralblatt fur Bakteriologie, Parasitenkunde, Infek-tionskrankheiten und Hygiene. 1925;II(63):353-359.
7. Belyakov A.Ye., Burygin G.L., Arbatsky N.P., Shashkov A.S., Se-livanov N.Yu., Matora L.Yu., Knirel Yu.A., Shchyogolev S.Yu. Identification of an O-linked repetitive glycan chain of the polar flagellum flagellin of Azospirillum brasilense Sp7. Carbohydr. Res. 2012;361:127-132. https://doi.org/10.1016/j.carres.2012.08.019.
8. Bogatyrev V.A., Dykman L.A., Matora L.Yu., Schwartsburd B.I. The serotyping of Azospirillum spp. by cell-gold immunoblot-ting. FEMS Microb. Lett. 1992;75(2-3):115-118. https://doi.org/10.1111/ j.1574-6968.1992. tb05402.x.
9. Caceres E.A.R. Improved media for isolation of Azospirillum spp. Appl. Environ. Microbiol. 1982;44(4):990-991.
10. Declerck S., Willems A., van der Heijden M., Varese G., Tur-kovskaya O., Evtushenko L., Ivshina I., Desmeth Ph. PERN: an EU-Russia initiative for rhizosphere microbial resources. Trends Biotechnol. 2015;33(7):377-380. https://doi.org/10.1016/j.tibtech. 2015.03.005.
11. Decree of the Government of the Russian Federation of July 18, 2013 No. 1247-r “On approval of the action plan (“road map”) “Development of biotechnologies and genetic engineering”. Available at: https://rulaws.ru/goverment/Rasporyazhenie-Pravitelstva-RF-ot-18.07.2013-N-1247-r (in Russian)
12. Dekhil S.B., Cahill M., Stackbrandt E., Sly L.I. Transfer of Con-glomeromonas largomobilis subs. largomobilis to the genus Azospirillum as Azospirillum largomobile comb. nov., and elevation of Conglomeromonas largomobilis subs. parooensis to the new type species of Conglomeromonas, Conglomeromonas parooensis sp. nov. Syst. Appl. Microbiol. 1997;20:72-77. https://doi.org/10.1016/S0723-2020(97)80050-1.
13. Dobereiner J., Day J. Associative symbioses in tropical grasses: characterization of microorganisms and dinitrogen-fixing sites. In: Newton W.E., Nyman C.J. (Eds.). Proceedings of the First International Symposium on Nitrogen Fixation. Washington, 1976;2:518-538.
14. Dykman L.A., Staroverov S.A., Bogatyrev V.A., Shchyogolev S.Yu. Gold nanoparticles as an antigen carrier and an adjuvant. In: Chow P.E. (Ed.). Gold Nanoparticles: Properties, Characterization and Fabrication. New York, 2010;2:59-88.
15. Eckert B., Weber O.B., Kirchhof G., Halbritter A., Stoffels M., Hartmann A. Azospirillum doebereinerae sp. nov., a nitrogen-fixing bacterium associated with the C4-grass Miscanthus. Int. J. Syst. Evol. Microbiol. 2001;51(1):17-26. https://doi.org/10.1099/00207713-51-1-17.
16. Fedonenko Yu.P., Burygin G.L., Sigida E.N., Popova I.A., Surki-na A.K., Zdorovenko E.L., Konnova S.A. Immunochemical characterization of the capsular polysaccharide from the Azospirillum irakense KBC1. Curr. Microbiol. 2013;67(2):234-239. https://doi.org/10.1007/s00284-013-0346-1.
17. Fedonenko Yu.P., Sigida E.N., Ignatov V.V., Konnova S.A. Structure and serology of O-antigens of nitrogen-fixing rhizobacteria of the genus Azospirillum. Russ. Chem. Bull. 2015;64(5):1024-1031. https://doi.org/10.1007/s11172-015-0971-x.
18. Fedorova L.S., Pozdnyakova L.I., Kanevskaya S.V. Isolation of Azospirillum from cultural and wild cereals. Mikrobiologiya = Microbiology (Moscow). 1985;54(4):684-685. (in Russian)
19. Fukami J., Cerezini P., Hungria M. Azospirillum: benefits that go far beyond biological nitrogen fixation. AMB Express. 2018; 8(1):73. https://doi.org/10.1186/s13568-018-0608-1.
20. Golubev S.N., Dubrovskaya E.V., Turkovskaya O.V. Rhizosphere microorganism collection of IBPPM RAS: revision of Azospirillum strains based on 16S rRNA gene sequence analysis. Izvestiya Saratovskogo Universiteta = Proceedings of the Saratov State University, new series, Ser. Chemistry-Biology-Ecology. 2018;18(1):52-59. https://doi.org/10.18500/1816-9775-2018-18-1-52-59. (in Russian)
21. Hartmann A., Baldani J.I. The genus Azospirillum. Prokaryotes. 2006;5:115-140.
22. Ivshina I.B. Current situation and challenges of specialized microbial resource centres in Russia. Microbiology (Moscow). 2012; 81(5):509-516. https://doi.org/10.1134/S0026261712050098.
23. Kalakutsky L.V., Ozerskaya S.M. Biological resource centres: current status in Russia and the world, problems of organization, development prospects. Vestnik Biotekhnologii i Fiziko-Khimi-cheskoy Biologii imeni Yu.A. Ovchinnikova = Yu.A. Ovchinnikov Bulletin of Biotechnology and Physical and Chemical Biology. 2011;7(1):28-40. (in Russian)
24. Kalakutsky L.V., Ozerskaya S.M., Evtushenko L.I., Mazanov A.L. Russian collections of microorganisms. Prikladnaya Biokhimiya i Mikrobiologiya = Applied Biochemistry and Microbiology. 1996;32(1):133-143. (in Russian)
25. Kamnev A.A., Tarantilis P.A., Antonyuk L.P., Bespalova L.A., Polissiou M.G., Colina M., Gardiner P.H.E., Ignatov V.V. Fourier transform Raman spectroscopic characterisation of cells of the plant-associated soil bacterium Azospirillum brasilense Sp7. J. Mol. Struct. 2001;563-564:199-207. https://doi.org/10.1016/S0022-2860(00)00877-2.
26. Kamnev A.A., Tugarova A.V Sample treatment in Mossbauer spectroscopy for protein-related analyses: nondestructive possibilities to look inside metal-containing biosystems. Talanta. 2017;174:819-837. https://doi.org/10.1016/j.talanta.2017.06.057.
27. Kamnev A.A., Tugarova A.V., Dyatlova Yu.A., Tarantilis P.A., Grigoryeva O.P., Fainleib A.M., De Luca S. Methodological effects in Fourier transform infrared (FTIR) spectroscopy: implications for structural analyses of biomacromolecular samples. Spectro-chim. Acta Part A: Mol. Biomol. Spectrosc. 2018;193:558-564. https://doi.org/10.1016/j.saa.2017.12.051.
28. Karpunina L.V, Vishneveckaya O.A., Bogatyrev V.A., Nikitina V.E., Ital’yanskaya Yu.V Determination of lectin and agglutinin localization in soil nitrogen-fixing bacteria. Mikrobio-logiya = Microbiology (Moscow). 1995;64(4):453-457. (in Russian)
29. Katsy E.I. Plasmid plasticity in the plant-associated bacteria of the genus Azospirillum. In: Maheshwari D.K. (Ed.). Bacteria in Agrobiology: Plant Growth Responses. Berlin, 2011;139-157.
30. Katsy E.I. Plasmid rearrangements and changes in cell-surface architecture and social behavior of Azospirillum brasilense. In: Katsy E.I. (Ed.). Plasticity in Plant-Growth-Promoting and Phytopathogenic Bacteria. New York, 2014;81-97.
31. Katsy E.I., Petrova L.P. Genome rearrangements in Azospirillum brasilense Sp7 with the involvement of the plasmid pRhico and the prophage ФAb-Cd. Russ. J. Genet. 2015;51(12):1165-1171. https://doi.org/10.1134/S1022795415110095.
32. Katsy E.I., Prilipov A.G. Mobile elements of an Azospirillum brasilense Sp245 85-MDa plasmid involved in replicon fusions. Plasmid. 2009;62(1):22-29. https://doi.org/10.1016/j.plasmid.2009.02.003.
33. Khammas K.M., Ageron E., Grimont P.A.D., Kaiser P. Azospirillum irakense sp. nov., a new nitrogen-fixing bacterium associated with rice roots and rhizosphere soil. Res. Microbiol. 1989; 140(9):679-693. https://doi.org/10.1016/0923-2508(89)90199-X.
34. Konnova O.N., Boiko A.S., Burygin G.L., Fedorenko Yu.P., Mato-ra L.Yu., Konnova S.A., Ignatov V.V. Chemical and serological studies of liposaccharides of bacteria of the genus Azospirillum. Microbiology (Moscow). 2008;77(3):305-312. https://doi.org/10.1134/S0026261708030090.
35. Konnova S.A., Makarov O.E., Skvortsov I.M., Ignatov V.V. Isolation, fractionation and some properties of polysaccharides produced in a bound form by Azospirillum brasilense and their possible involvement in Azospirillum - wheat root interactions. FEMS Microbiol. Lett. 1994;118(1-2):93-100. https://doi.org/10.1111/j.1574-6968.1994.tb06809.x.
36. Kovacs K., Kamnev A.A., Pechousek J., Tugarova A.V, Kuz-mann E., Machala L., Zboril R., Homonnay Z., Lazar K. Evidence for ferritin as dominant iron-bearing species in the rhizobacterium Azospirillum brasilense Sp7 provided by low-temperature/in-field Mossbauer spectroscopy. Anal. Bioanal. Chem. 2016;408(6):1565-1571. https://doi.org/10.1007/s00216-015-9264-3.
37. Kovtunov E.A., Petrova L.P., Shelud’ko A.V., Katsy E.I. Transpo-son insertion into a chromosomal copy offlhB gene is concurrent with defects in the formation of polar and lateral flagella in bacterium Azospirillum brasilense Sp245. Russ. J. Genet. 2013; 49(8): 881-884. https://doi.org/10.1134/S1022795413080061.
38. Kryuchkova E.V, Burygin G.L., Makarov O.E., Fedorov E.E. Growth and production of auxin in rhizosphere bacteria of the genus Azospirillum with the presence of glyphosate. In: Turkov-skaya O.V (Ed.). The Strategy of Interaction of Microorganisms with the Environment. Saratov, 2005;140-147. (in Russian)
39. Kupryashina M.A., Vetchinkina E.P., Burov A.M., Ponomareva E.G., Nikitina V.E. Biosynthesis of gold nanoparticles by Azospirillum brasilense. Microbiology (Moscow). 2013;82(6): 833-840. https://doi.org/10.1134/S002626171401007X.
40. Lavrinenko K., Chernousova E., Gridneva E., Dubinina G., Akimov V, Kuever J., Lysenko A., Grabovich M. Azospirillum thiophilum sp. nov., a diazotrophic bacterium isolated from a sulfide spring. Int. J. Syst. Evol. Microbiol. 2010;60(12):2832-2837. https://doi.org/10.1099/ijs.0.018853-0.
41. Lin S.-Y, Hameed A., Liu Y-C., Hsu Y-H., Lai W.-A., Shen F.- T., Young C.-C. Azospirillum soli sp. nov., a nitrogen-fixing species isolated from agriculture soil. Int. J. Syst. Evol. Microbiol. 2015; 65(12):4601-4607. https://doi.org/10.1099/ijsem.0.000618.
42. Lin S.-Y., Hameed A., Shen F.-T., Liu Y-C., Hsu Y.-H., Shahina M., Lai W.-A., Young C.-C. Description of Niveispirillum fermenti gen. nov., sp. nov., isolated from a fermentor in Taiwan, transfer of Azospirillum irakense (1989) as Niveispirillum irakense comb. nov., and reclassification of Azospirillum amazonense (1983) as Nitrospirillum amazonense gen. nov. Antonie van Leeuwenhoek. 2014;105(6):1149-1162. https://doi.org/10.1007/s10482-014-0176-6.
43. Lin S.-Y, Liu Y-C., Hameed A., Hsu Y-H., Huang H.-I., Lai W.-A., Young C.-C. Azospirillum agricola sp. nov., a nitrogen-fixing species isolated from cultivated soil. Int. J. Syst. Evol. Microbiol. 2016;66(3):1453-1458. https://doi.org/10.1099/ijsem.0.000904.
44. Lin S.-Y., Liu Y-C., Hameed A., Hsu Y-H., Lai W.-A., Shen F.-T., Young C.-C. Azospirillum fermentarium sp. nov., a nitrogenfixing species isolated from a fermenter. Int. J. Syst. Evol. Microbiol. 2013;63(10):3762-3768. https://doi.org/10.1099/ijs.0.050872-0.
45. Lin S.-Y, Shen F.-T., Young L.-S., Zhu Z.-L., Chen W.-M., Young C.- C. Azospirillumformosense sp. nov., a diazotroph from agricultural soil. Int. J. Syst. Evol. Microbiol. 2012;62(5):1185-1190. https://doi.org/10.1099/ijs.0.030585-0.
46. Lin S.-Y., Young C.-C., Hupfer H., Siering C., Arun A.B., Chen W.-M., Lai W.-A., Shen F.-T., Rekha P.D., Yassin A.F. Azospirillum picis sp. nov., isolated from discarded tar. Int. J. Syst. Evol. Microbiol. 2009;59(4):761-765. https://doi.org/10.1099/ijs.0.65837-0.
47. Lyubun Ye.V, Fritzsche A., Chernyshova M.P., Dudel E.G., Fedorov E.E. Arsenic transformation by Azospirillum brasilense Sp245 in association with wheat (Triticum aestivum L.) roots. Plant Soil. 2006;286(1-2):219-227. https://doi.org/10.1007/s11104-006-9039-x.
48. Magalhaes F.M.M., Baldani J.I., Souto S.M., Kuykendall J.R., Dobereiner J.A. New acid-tolerant Azospirillum species. Ann. Acad. Bras. Cienc. 1983;55:417-430.
49. Matora L.Yu., Bogatyrev V.A., Dykman L.A., Shchyogolev S.Yu. Immunochemical identification of azospirilla and studies of their antigenic structures: In: Ignatov V.V. (Ed.). Molecular Bases of the Relationships between Associative Microorganisms and Plants. Moscow: Nauka Publ., 2005;209-237. (in Russian)
50. Matveev VYu., Sen A.N., Panasenko V.I. Plasmid content of Azospirillum strains from cereals. Folia Microbiol. 1988;33(4):273-276. https://doi.org/10.1007/BF02925620.
51. Mehnaz S. Azospirillum: a biofertilizer for every crop. In: Aro-ra N.K. (Ed.). Plant Microbes Symbiosis: Applied Facets. New Delhi: Springer, 2015;297-314. https://doi.org/10.1007/978-81-322-2068-8_15.
52. Mehnaz S., Weselowski B., Lazarovits G. Azospirillum canadense sp. nov., a nitrogen-fixing bacterium isolated from corn rhizosphere. Int. J. Syst. Evol. Microbiol. 2007a;57(3):620-624. https://doi.org/10.1099/ijs.0.64804-0.
53. Mehnaz S., Weselowski B., Lazarovits G. Azospirillum zeae sp. nov., a diazotrophic bacterium isolated from rhizosphere soil of Zea mays. Int. J. Syst. Evol. Microbiol. 2007b;57(12):2805-2809. https://doi.org/10.1099/ijs.0.65128-0.
54. Muratova A.Yu., Turkovskaya O.V., Antonyuk L.P., Makarov O.E., Pozdnyakova L.I., Ignatov V.V. Oil-oxidizing potential of associative rhizobacteria of the genus Azospirillum. Microbiology (Moscow). 2005;74(2):210-215. https://doi.org/10.1007/s11021-005-0053-4.
55. Nikitina VE., Alen’kina S.A., Ponomareva E.G., Savenkova N.N. Role of lectins of the cell surface of azospirilla in association with wheat roots. Microbiology (Moscow). 1996;65(2): 144-148.
56. Nikitina VE., Ponomareva E.G., Alen’kina S.A. Azospirillum cell surface lectins and their role in associative plant-bacterial interactions. In: Ignatov V.V. (Ed.). Molecular Bases of the Relationships between Associative Microorganisms and Plants. Moscow: Nauka Publ., 2005;70-97. (in Russian)
57. Nikiforov V.V., Fedorova L.S., Pozdnyakova L.I., Zeleneva T.Yu., Golubev S.N., Kamennova E.B., Kovalenko E.P. Study of azospirilla isolated from cereals grown in Saratov region. In: Proc. 1st European Nitrogen Fixation Conference. Szeged, August 28-September 2, 1994. Szeged, 1994a;260-264.
58. Nikoforov V.V., Kozel E.A., Shneerson V.V., Pozdnyakova L.I., Fedorova L.S. Restriction endonucleases of the genus Azospirillum isolated from cereals of the Saratov region. Molekulyarnaya Genetika, Mikrobiologiya i Virusologiya = Molecular Genetics, Microbiology, and Virology. 1994b;4:12. (in Russian)
59. Patent RU 2403102 С1, IPC В09С 1/10. Method of Phytoremediation of Soil Contaminated with Hydrocarbons (versions). Inventors: A.Ju. Muratova, A.D. Bondarenkova, S.N. Golubev, L.V. Panchenko, O.V. Turkovskaja. Appl. 15.05.2009. Publ. 10.11.2010. Bull. No. 31. (in Russian)
60. Peng G., Wang H., Zhang G., Hou W., Liu Y., Wang E.T., Tan Z. Azospirillum melinis sp. nov., a group of diazotrophs isolated from tropical molasses grass. Int. J. Syst. Evol. Microbiol. 2006; 56(6):1263-1271. https://doi.org/10.1099/ijs.0.64025-0.
61. Pereg L., de-Bashan L.E., Bashan Y Assessment of affinity and specificity of Azospirillum for plants. Plant Soil. 2016;399(1-2): 389-414. https://doi.org/10.1007/s11104-015-2778-9.
62. Pozdnyakova L.I., Kanevskaya S.V., Levanova G.F., Baryshe-va N.N., Pilipenko T.Yu., Bogatyrev V.A., Fedorova L.S. Taxonomic studies of Azospirillum isolated from cereals in the Saratov region. Mikrobiologiya = Microbiology (Moscow). 1988; 57(2):275-278. (in Russian)
63. Recommendations of the “round table” on the topic “On improving legislative support for the conservation of biological collections for the development of the biotechnological industry of the Russian Federation”. In: Issues of Legal Support for Scientific, Technical and Innovative Activities: an informational and analytical compilation based on materials from an extended field session and a round table. Moscow: Publication of the State Duma, 2011;176-180. (in Russian)
64. Reinhold B., Hurek T., Fendrik I., Pot B., Gillis M., Kertsers K., Thielemans D., De Ley J. Azospirillum halopraeferans sp. nov., a nitrogen fixing organism associated with roots of kallar grass [Leptochloa fusca (L.) Kunth.]. Int. J. Syst. Bacteriol. 1987; 37(1):43-51. https://doi.org/10.1099/00207713-37-1-43.
65. Shchyogolev S.Yu. On prokaryote taxonomy: topical problems and ways out of the crisis. Vestnik Biotekhnologii i Fiziko-Khimi-cheskoy Biologii imeni Yu.A. Ovchinnikova = Yu.A. Ovchinnikov Bulletin of Biotechnology and Physical and Chemical Biology. 2018;14(1):5-14. (in Russian)
66. Schelud’ko A.V., Makrushin K.V., Tugarova A.V., Krestinen-ko V.A., Panasenko VI., Antonyuk L.P., Katsy E.I. Changes in motility of the rhizobacterium Azospirillum brasilense in the presence of plant lectins. Microbiol. Res. 2009;164(2):149-156. https://doi.org/10.1016/j.micres. 2006.11.008.
67. Shelud’ko A.V, Shirokov A.A., Sokolova M.K., Sokolov O.I., Petrova L.P., Matora L.Yu., Katsy E.I. Wheat root colonization by Azospirillum brasilense strains with different motility. Microbiology (Moscow). 2010;79(5):688-695. https://doi.org/10.1134/S0026261710050140.
68. Shirokov A.A., Budanova A.A., Burov A.M., Khlebtsov B.N., Kra-sov A.I., Shchyogolev S.Yu., Matora L.Yu. Immunoelectron microscopy investigation of the cell surface of Azospirillum brasi-lense strains. Microbiology (Moscow). 2017;86(4):487-492. https://doi.org/10.1134/S0026261717040142.
69. Shirokov A.A., Krasov A.I., Selivanov N.Yu., Burygin G.L., Shchegolev S.Yu., Matora L.Yu. Immunochemical detection of azospirilla in soil with genus-specific antibodies. Microbiology (Moscow). 2015;84(2):263-267. https://doi.org/10.1134/S0026261715020137.
70. Tarrand J., Krieg N., Dobereiner J. A taxonomic study of the Spirillum lipoferum group with descriptions of a new genus Azospirillum gen. nov. two species, Azospirillum lipofeum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can. J. Microbiol. 1978;24(8):967-980. https://doi.org/10.1139/m78-160.
71. Tikhonova E.N., Grouzdev D.S., Kravchenko I.K. Azospirillum palustre sp. nov., a methylotrophic nitrogen-fixing species isolated from raised bog. Int. J. Syst. Evol. Microbiol. 2019; 69(9):2787-2793. https://doi.org/10.1099/ijsem.0.003560.
72. Tikhonovich I.A., Provorov N.A. Symbiosis of Plants and Microorganisms: The Molecular Genetics of the Agrosystems of the Future. St. Petersburg, 2009. (in Russian)
73. Tkachenko O.V, Evseeva N.V, Boikova N.V, Matora L.Yu., Burygin G.L., Lobachev Yu.V, Shchyogolev S.Yu. Improved potato microclonal reproduction with the plant-growth promoting rhi-zobacteria Azospirillum. Agron. Sustain. Dev. 2015;35(3):1167-1174. https://doi.org/10.1007/s13593-015-0304-3.
74. Tugarova A., Mamchenkova P., Dyatlova Y., Kamnev A. Biochemical study of selenite bioconversion by Azospirillum brasilense. FEBS Open Bio. 2018;8(S1):479-480. https://doi.org/10.1002/2211-5463.12446.
75. Tugarova A.V., Burov A.M., Burashnikova M.M., Kamnev A.A. Gold(III) reduction by the rhizobacterium Azospirillum brasi-lense with the formation of gold nanoparticles. Microb. Ecol. 2014a;67(1):155-160. https://doi.org/10.1007/s00248-013-0329-6.
76. Tugarova A.V, Shelud’ko A.V., Dyatlova Yu.A., Filip’echeva Yu.A., Kamnev A.A. FTIR spectroscopic study of biofilms formed by the rhizobacterium Azospirillum brasilense Sp245 and its mutant Azospirillum brasilense Sp245.1610. J. Mol. Struct. 2017;1140:142-147. https://doi.org/10.1016/j.molstruc.2016.12.063.
77. Tugarova A.V, Vetchinkina E.P., Loshchinina E.A., Burov A.M., Nikitina VE., Kamnev A.A. Reduction of selenite by Azospirillum brasilense with the formation of selenium nanoparticles. Microb. Ecol. 2014b;68(3):495-503. https://doi.org/10.1007/s00248-014-0429-y.
78. Tyagi S., Singh D.K. Azospirillum himalayense sp. nov., a nifH bacterium isolated from Himalayan valley soil, India. Ann. Microbiol. 2014;64(1):259-266. https://doi.org/10.1007/s13213-013-0658-1.
79. Wisniewski-Dye F., Borziak K., Khalsa-Moyers G., Alexandre G., Sukharnikov L.O., Wuichet K., Hurst G.B., McDonald W.H., Robertson J.S., Barbe V, Calteau A., Rouy Z., Mangenot S., Prigent-Combaret C., Normand Ph., Boyer M., Siguier P., Des-saux Y., Elmerich C., Condemine G., Krishnen G., Kennedy I., Paterson A.H., Gonzalez V, Mavingui P., Zhulin I.B. Azospirillum genomes reveal transition of bacteria from aquatic to terrestrial environments. PLoS Genet. 2011;7(12):e1002430. https://doi.org/10.1371/joumal.pgen.1002430.
80. Xie C.-H., Yokota A. Azospirillum oryzae sp. nov., a nitrogen-fixing bacterium isolated from the roots of the rice plant Oryza sativa. Int. J. Syst. Evol. Microbiol. 2005;55(4):1435-1438. https://doi.org/10.1099/ijs.0.63503-0.
81. Yang Y., Zhang R., Feng J., Wang C., Chen J. Azospirillum griseum sp. nov., isolated from lakewater. Int. J. Syst. Evol. Microbiol. 2019;69:3676. https://doi.org/10.1099/ijsem.0.003460.
82. Yegorenkova I.V, Konnova S.A., Sachuk V.N., Ignatov V.V. Azospirillum brasilense colonisation of wheat roots and the role of lectin-carbohydrate interactions in bacterial adsorption and root-hair deformation. Plant Soil. 2001;231(2):275-282. https://doi.org/10.1023/A:1010340700694.
83. Young C.C., Hupfer H., Siering C., Ho M.-J., Arun A.B., Lai W.-A., Rekha P.D., Shen F.-T., Hung M.-H., Chen W.-M., Yassin A.F. Azospirillum rugosum sp. nov., isolated from oil-contaminated soil. Int. J. Syst. Evol. Microbiol. 2008;58(4):959-963. https://doi.org/10.1099/ijs.0.65065-0.
84. Zhou S., Han L., Wang Y, Yang G., Zhuang L., Hu P. Azospirillum humicireducens sp. nov., a nitrogen-fixing bacterium isolated from amicrobial fuel cell. Int. J. Syst. Evol. Microbiol. 2013;63(7):2618-2624. https://doi.org/10.1099/ijs.0.046813-0.
85. Zhou Y, Wei W., Wang X., Xu L., Lai R. Azospirillum palatum sp. nov., isolated from forest soil in Zhejiang province, China. J. Gen. Appl. Microbiol. 2009;55(1):1-7. https://doi.org/10.2323/jgam.55.1.