The Collection of Rhizosphere Microorganisms: its importance for the study of associative plant-bacterium interactions
https://doi.org/10.18699/VJ20.623
Abstract
Microbial culture collections are very important components of biological science. They provide researchers with material for studies and preserve biological resources. One such collection is the Collection of Rhizosphere Microorganisms, kept at the Institute of Biochemistry and Physiology of Plants and Microorganisms of the Russian Academy of Sciences, Saratov (IBPPM). Its activity is primarily directed toward the isolation and preservation of microorganisms from the plant root zone. The international research interest in microorganisms from this ecological niche is not waning, because they are very important for plant growth and development and, consequently, for plant breeding. The group of bacteria with properties of significance for plants has been given the name "plant-growth-promoting rhizobacteria” (PGPR). This group includes nitrogen-fixing soil alpha-proteobacte-ria of the genus Azospirillum, which form the core of the IBPPM collection. First discovered by Brazilian scientists in the 1970s, azospirilla are now a universally recognized model object for studying the molecular mechanisms underlying plant-bacterium interactions. The broad range of useful properties found in these microorganisms, including the fixation of atmospheric nitrogen, production of phytohormones, solubilization of phosphates, control of pathogens, and formation of induced systemic resistance in the colonized plants, make these bacteria an all-purpose tool that has been used for several decades in basic and applied research. This article reviews the current state of Azospirillum research, with emphasis on the results obtained at the IBPPM. Scientific expeditions across the Saratov region undertaken by IBPPM microbiologists in the early 1980s formed the basis for the unique collection of members of this bacterial taxon. Currently, the collection has more than 160 Azospirillum strains and is one of the largest collections in Europe. The research conducted at the IBPPM is centered mostly on the Azospirillum structures involved in associative symbiosis with plants, primarily extracellular polysaccharide-containing complexes and lectins. The development of immunochemical methods contributed much to our understanding of the overall organization of the surface of rhizosphere bacteria. The extensive studies of the Azospirillum genome largely deepened our understanding of the role of the aforesaid bacterial structures, motility, and biofilms in the colonization of host plant roots. Of interest are also applied studies focusing on agricultural and environmental technologies and on the "green” synthesis of Au, Ag, and Se nanoparticles. The Collection of Rhizosphere Microorganisms continues to grow, being continually supplemented with newly isolated strains. The data presented in this article show the great importance of specialized microbial culture repositories, such as the IBPPM collection, for the development and maintenance of the microbial research base and for the effective solution of basic and applied tasks in microbiology.
Keywords
About the Authors
O. V. TurkovskayaRussian Federation
Saratov
S. N. Golubev
Russian Federation
Saratov
References
1. Alen’kina S.A., Bogatyrev VA., Matora L.Yu., Sokolova M.K., Chernysheva M.P., Trutneva K.A., Nikitina V.E. Signal effects of the lectin from the associative nitrogen-fixing bacterium Azospirillum brasilense Sp7 in bacterial-plant root interactions. Plant Soil. 2014;381(1-2):337-349. DOI 10.1007/s11104-014-2125-6.
2. Alen’kina S.A., Payusova O.A., Nikitina V.E. Effect of Azospirillum lectins on the activities of wheat-root hydrolytic enzymes. Plant Soil. 2006;283(1-2):147-151. DOI 10.1007/s11104-005-4890-8.
3. Anandham R., Heo J., Krishnamoorthy R., SenthilKumar M., Gopal N.O., Kim S.J., Kwon S.-W. Azospirillum ramasamyi sp. nov., a novel diazotrophic bacterium isolated from fermented bovine products. Int. J. Syst. Evol. Microbiol. 2019;69(5):1369-1375. DOI 10.1099/ijsem.0.003320.
4. Baldani J.I., Videira S.S., Teixeira K.R.S., Reis V.M., de Oliveira A.L.M., Schwab S., de Souza E.M., Pedraza R.O., Baldani V.L.D., Hartmann A. The Family Rhodospirillaceae. In: Rosenberg E., DeLong E.F., Lory S., Stackebrandt E., Thompson F. (Eds.). The Prokaryotes: Alphaproteobacteria and Betaproteobacteria. Fourth Edn. Berlin: Heidelberg, 2014; 533-618.
5. Bashan Y, Holguin G., de-Bashan L.E. Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997-2003). Can. J. Microbiol. 2004;50(8):521-577. DOI 10.1139/w04-035.
6. Beijerinck M.W. Uber ein Spirillum, welches freien Stickstoff bin-den kann? Zentralblatt fur Bakteriologie, Parasitenkunde, Infek-tionskrankheiten und Hygiene. 1925;II(63):353-359.
7. Belyakov A.Ye., Burygin G.L., Arbatsky N.P., Shashkov A.S., Se-livanov N.Yu., Matora L.Yu., Knirel Yu.A., Shchyogolev S.Yu. Identification of an O-linked repetitive glycan chain of the polar flagellum flagellin of Azospirillum brasilense Sp7. Carbohydr. Res. 2012;361:127-132. DOI 10.1016/j.carres.2012.08.019.
8. Bogatyrev V.A., Dykman L.A., Matora L.Yu., Schwartsburd B.I. The serotyping of Azospirillum spp. by cell-gold immunoblot-ting. FEMS Microb. Lett. 1992;75(2-3):115-118. DOI 10.1111/ j.1574-6968.1992. tb05402.x.
9. Caceres E.A.R. Improved media for isolation of Azospirillum spp. Appl. Environ. Microbiol. 1982;44(4):990-991.
10. Declerck S., Willems A., van der Heijden M., Varese G., Tur-kovskaya O., Evtushenko L., Ivshina I., Desmeth Ph. PERN: an EU-Russia initiative for rhizosphere microbial resources. Trends Biotechnol. 2015;33(7):377-380. DOI 10.1016/j.tibtech. 2015.03.005.
11. Decree of the Government of the Russian Federation of July 18, 2013 No. 1247-r “On approval of the action plan (“road map”) “Development of biotechnologies and genetic engineering”. Available at: https://rulaws.ru/goverment/Rasporyazhenie-Pravitelstva-RF-ot-18.07.2013-N-1247-r/ (in Russian)
12. Dekhil S.B., Cahill M., Stackbrandt E., Sly L.I. Transfer of Con-glomeromonas largomobilis subs. largomobilis to the genus Azospirillum as Azospirillum largomobile comb. nov., and elevation of Conglomeromonas largomobilis subs. parooensis to the new type species of Conglomeromonas, Conglomeromonas parooensis sp. nov. Syst. Appl. Microbiol. 1997;20:72-77. DOI 10.1016/S0723-2020(97)80050-1.
13. Dobereiner J., Day J. Associative symbioses in tropical grasses: characterization of microorganisms and dinitrogen-fixing sites. In: Newton W.E., Nyman C.J. (Eds.). Proceedings of the First International Symposium on Nitrogen Fixation. Washington, 1976;2:518-538.
14. Dykman L.A., Staroverov S.A., Bogatyrev V.A., Shchyogolev S.Yu. Gold nanoparticles as an antigen carrier and an adjuvant. In: Chow P.E. (Ed.). Gold Nanoparticles: Properties, Characterization and Fabrication. New York, 2010;2:59-88.
15. Eckert B., Weber O.B., Kirchhof G., Halbritter A., Stoffels M., Hartmann A. Azospirillum doebereinerae sp. nov., a nitrogen-fixing bacterium associated with the C4-grass Miscanthus. Int. J. Syst. Evol. Microbiol. 2001;51(1):17-26. DOI 10.1099/00207713-51-1-17.
16. Fedonenko Yu.P., Burygin G.L., Sigida E.N., Popova I.A., Surki-na A.K., Zdorovenko E.L., Konnova S.A. Immunochemical characterization of the capsular polysaccharide from the Azospirillum irakense KBC1. Curr. Microbiol. 2013;67(2):234-239. DOI 10.1007/s00284-013-0346-1.
17. Fedonenko Yu.P., Sigida E.N., Ignatov V.V., Konnova S.A. Structure and serology of O-antigens of nitrogen-fixing rhizobacteria of the genus Azospirillum. Russ. Chem. Bull. 2015;64(5):1024-1031. DOI 10.1007/s11172-015-0971-x.
18. Fedorova L.S., Pozdnyakova L.I., Kanevskaya S.V. Isolation of Azospirillum from cultural and wild cereals. Mikrobiologiya = Microbiology (Moscow). 1985;54(4):684-685. (in Russian)
19. Fukami J., Cerezini P., Hungria M. Azospirillum: benefits that go far beyond biological nitrogen fixation. AMB Express. 2018; 8(1):73. DOI 10.1186/s13568-018-0608-1.
20. Golubev S.N., Dubrovskaya E.V., Turkovskaya O.V. Rhizosphere microorganism collection of IBPPM RAS: revision of Azospirillum strains based on 16S rRNA gene sequence analysis. Izvestiya Saratovskogo Universiteta = Proceedings of the Saratov State University, new series, Ser. Chemistry-Biology-Ecology. 2018;18(1):52-59. DOI 10.18500/1816-9775-2018-18-1-52-59. (in Russian)
21. Hartmann A., Baldani J.I. The genus Azospirillum. Prokaryotes. 2006;5:115-140.
22. Ivshina I.B. Current situation and challenges of specialized microbial resource centres in Russia. Microbiology (Moscow). 2012; 81(5):509-516. DOI 10.1134/S0026261712050098.
23. Kalakutsky L.V., Ozerskaya S.M. Biological resource centres: current status in Russia and the world, problems of organization, development prospects. Vestnik Biotekhnologii i Fiziko-Khimi-cheskoy Biologii imeni Yu.A. Ovchinnikova = Yu.A. Ovchinnikov Bulletin of Biotechnology and Physical and Chemical Biology. 2011;7(1):28-40. (in Russian)
24. Kalakutsky L.V., Ozerskaya S.M., Evtushenko L.I., Mazanov A.L. Russian collections of microorganisms. Prikladnaya Biokhimiya i Mikrobiologiya = Applied Biochemistry and Microbiology. 1996;32(1):133-143. (in Russian)
25. Kamnev A.A., Tarantilis P.A., Antonyuk L.P., Bespalova L.A., Polissiou M.G., Colina M., Gardiner P.H.E., Ignatov V.V. Fourier transform Raman spectroscopic characterisation of cells of the plant-associated soil bacterium Azospirillum brasilense Sp7. J. Mol. Struct. 2001;563-564:199-207. DOI 10.1016/S0022-2860(00)00877-2.
26. Kamnev A.A., Tugarova A.V Sample treatment in Mossbauer spectroscopy for protein-related analyses: nondestructive possibilities to look inside metal-containing biosystems. Talanta. 2017;174:819-837. DOI 10.1016/j.talanta.2017.06.057.
27. Kamnev A.A., Tugarova A.V., Dyatlova Yu.A., Tarantilis P.A., Grigoryeva O.P., Fainleib A.M., De Luca S. Methodological effects in Fourier transform infrared (FTIR) spectroscopy: implications for structural analyses of biomacromolecular samples. Spectro-chim. Acta Part A: Mol. Biomol. Spectrosc. 2018;193:558-564. DOI 10.1016/j.saa.2017.12.051.
28. Karpunina L.V, Vishneveckaya O.A., Bogatyrev V.A., Nikitina V.E., Ital’yanskaya Yu.V Determination of lectin and agglutinin localization in soil nitrogen-fixing bacteria. Mikrobio-logiya = Microbiology (Moscow). 1995;64(4):453-457. (in Russian)
29. Katsy E.I. Plasmid plasticity in the plant-associated bacteria of the genus Azospirillum. In: Maheshwari D.K. (Ed.). Bacteria in Agrobiology: Plant Growth Responses. Berlin, 2011;139-157.
30. Katsy E.I. Plasmid rearrangements and changes in cell-surface architecture and social behavior of Azospirillum brasilense. In: Katsy E.I. (Ed.). Plasticity in Plant-Growth-Promoting and Phytopathogenic Bacteria. New York, 2014;81-97.
31. Katsy E.I., Petrova L.P. Genome rearrangements in Azospirillum brasilense Sp7 with the involvement of the plasmid pRhico and the prophage ФAb-Cd. Russ. J. Genet. 2015;51(12):1165-1171. DOI 10.1134/S1022795415110095.
32. Katsy E.I., Prilipov A.G. Mobile elements of an Azospirillum brasilense Sp245 85-MDa plasmid involved in replicon fusions. Plasmid. 2009;62(1):22-29. DOI 10.1016/j.plasmid.2009.02.003.
33. Khammas K.M., Ageron E., Grimont P.A.D., Kaiser P. Azospirillum irakense sp. nov., a new nitrogen-fixing bacterium associated with rice roots and rhizosphere soil. Res. Microbiol. 1989; 140(9):679-693. DOI 10.1016/0923-2508(89)90199-X.
34. Konnova O.N., Boiko A.S., Burygin G.L., Fedorenko Yu.P., Mato-ra L.Yu., Konnova S.A., Ignatov V.V. Chemical and serological studies of liposaccharides of bacteria of the genus Azospirillum. Microbiology (Moscow). 2008;77(3):305-312. DOI 10.1134/S0026261708030090.
35. Konnova S.A., Makarov O.E., Skvortsov I.M., Ignatov V.V. Isolation, fractionation and some properties of polysaccharides produced in a bound form by Azospirillum brasilense and their possible involvement in Azospirillum - wheat root interactions. FEMS Microbiol. Lett. 1994;118(1-2):93-100. DOI 10.1111/j.1574-6968.1994.tb06809.x.
36. Kovacs K., Kamnev A.A., Pechousek J., Tugarova A.V, Kuz-mann E., Machala L., Zboril R., Homonnay Z., Lazar K. Evidence for ferritin as dominant iron-bearing species in the rhizobacterium Azospirillum brasilense Sp7 provided by low-temperature/in-field Mossbauer spectroscopy. Anal. Bioanal. Chem. 2016;408(6):1565-1571. DOI 10.1007/s00216-015-9264-3.
37. Kovtunov E.A., Petrova L.P., Shelud’ko A.V., Katsy E.I. Transpo-son insertion into a chromosomal copy offlhB gene is concurrent with defects in the formation of polar and lateral flagella in bacterium Azospirillum brasilense Sp245. Russ. J. Genet. 2013; 49(8): 881-884. DOI 10.1134/S1022795413080061.
38. Kryuchkova E.V, Burygin G.L., Makarov O.E., Fedorov E.E. Growth and production of auxin in rhizosphere bacteria of the genus Azospirillum with the presence of glyphosate. In: Turkov-skaya O.V (Ed.). The Strategy of Interaction of Microorganisms with the Environment. Saratov, 2005;140-147. (in Russian)
39. Kupryashina M.A., Vetchinkina E.P., Burov A.M., Ponomareva E.G., Nikitina V.E. Biosynthesis of gold nanoparticles by Azospirillum brasilense. Microbiology (Moscow). 2013;82(6): 833-840. DOI 10.1134/S002626171401007X.
40. Lavrinenko K., Chernousova E., Gridneva E., Dubinina G., Akimov V, Kuever J., Lysenko A., Grabovich M. Azospirillum thiophilum sp. nov., a diazotrophic bacterium isolated from a sulfide spring. Int. J. Syst. Evol. Microbiol. 2010;60(12):2832-2837. DOI 10.1099/ijs.0.018853-0.
41. Lin S.-Y, Hameed A., Liu Y-C., Hsu Y-H., Lai W.-A., Shen F.- T., Young C.-C. Azospirillum soli sp. nov., a nitrogen-fixing species isolated from agriculture soil. Int. J. Syst. Evol. Microbiol. 2015; 65(12):4601-4607. DOI 10.1099/ijsem.0.000618.
42. Lin S.-Y., Hameed A., Shen F.-T., Liu Y-C., Hsu Y.-H., Shahina M., Lai W.-A., Young C.-C. Description of Niveispirillum fermenti gen. nov., sp. nov., isolated from a fermentor in Taiwan, transfer of Azospirillum irakense (1989) as Niveispirillum irakense comb. nov., and reclassification of Azospirillum amazonense (1983) as Nitrospirillum amazonense gen. nov. Antonie van Leeuwenhoek. 2014;105(6):1149-1162. DOI 10.1007/s10482-014-0176-6.
43. Lin S.-Y, Liu Y-C., Hameed A., Hsu Y-H., Huang H.-I., Lai W.-A., Young C.-C. Azospirillum agricola sp. nov., a nitrogen-fixing species isolated from cultivated soil. Int. J. Syst. Evol. Microbiol. 2016;66(3):1453-1458. DOI 10.1099/ijsem.0.000904.
44. Lin S.-Y., Liu Y-C., Hameed A., Hsu Y-H., Lai W.-A., Shen F.-T., Young C.-C. Azospirillum fermentarium sp. nov., a nitrogenfixing species isolated from a fermenter. Int. J. Syst. Evol. Microbiol. 2013;63(10):3762-3768. DOI 10.1099/ijs.0.050872-0.
45. Lin S.-Y, Shen F.-T., Young L.-S., Zhu Z.-L., Chen W.-M., Young C.- C. Azospirillumformosense sp. nov., a diazotroph from agricultural soil. Int. J. Syst. Evol. Microbiol. 2012;62(5):1185-1190. DOI 10.1099/ijs.0.030585-0.
46. Lin S.-Y., Young C.-C., Hupfer H., Siering C., Arun A.B., Chen W.-M., Lai W.-A., Shen F.-T., Rekha P.D., Yassin A.F. Azospirillum picis sp. nov., isolated from discarded tar. Int. J. Syst. Evol. Microbiol. 2009;59(4):761-765. DOI 10.1099/ijs.0.65837-0.
47. Lyubun Ye.V, Fritzsche A., Chernyshova M.P., Dudel E.G., Fedorov E.E. Arsenic transformation by Azospirillum brasilense Sp245 in association with wheat (Triticum aestivum L.) roots. Plant Soil. 2006;286(1-2):219-227. DOI 10.1007/s11104-006-9039-x.
48. Magalhaes F.M.M., Baldani J.I., Souto S.M., Kuykendall J.R., Dobereiner J.A. New acid-tolerant Azospirillum species. Ann. Acad. Bras. Cienc. 1983;55:417-430.
49. Matora L.Yu., Bogatyrev V.A., Dykman L.A., Shchyogolev S.Yu. Immunochemical identification of azospirilla and studies of their antigenic structures: In: Ignatov V.V. (Ed.). Molecular Bases of the Relationships between Associative Microorganisms and Plants. Moscow: Nauka Publ., 2005;209-237. (in Russian)
50. Matveev VYu., Sen A.N., Panasenko V.I. Plasmid content of Azospirillum strains from cereals. Folia Microbiol. 1988;33(4):273-276. DOI 10.1007/BF02925620.
51. Mehnaz S. Azospirillum: a biofertilizer for every crop. In: Aro-ra N.K. (Ed.). Plant Microbes Symbiosis: Applied Facets. New Delhi: Springer, 2015;297-314. DOI 10.1007/978-81-322-2068-8_15.
52. Mehnaz S., Weselowski B., Lazarovits G. Azospirillum canadense sp. nov., a nitrogen-fixing bacterium isolated from corn rhizosphere. Int. J. Syst. Evol. Microbiol. 2007a;57(3):620-624. DOI 10.1099/ijs.0.64804-0.
53. Mehnaz S., Weselowski B., Lazarovits G. Azospirillum zeae sp. nov., a diazotrophic bacterium isolated from rhizosphere soil of Zea mays. Int. J. Syst. Evol. Microbiol. 2007b;57(12):2805-2809. DOI 10.1099/ijs.0.65128-0.
54. Muratova A.Yu., Turkovskaya O.V., Antonyuk L.P., Makarov O.E., Pozdnyakova L.I., Ignatov V.V. Oil-oxidizing potential of associative rhizobacteria of the genus Azospirillum. Microbiology (Moscow). 2005;74(2):210-215. DOI 10.1007/s11021-005-0053-4.
55. Nikitina VE., Alen’kina S.A., Ponomareva E.G., Savenkova N.N. Role of lectins of the cell surface of azospirilla in association with wheat roots. Microbiology (Moscow). 1996;65(2): 144-148.
56. Nikitina VE., Ponomareva E.G., Alen’kina S.A. Azospirillum cell surface lectins and their role in associative plant-bacterial interactions. In: Ignatov V.V. (Ed.). Molecular Bases of the Relationships between Associative Microorganisms and Plants. Moscow: Nauka Publ., 2005;70-97. (in Russian)
57. Nikiforov V.V., Fedorova L.S., Pozdnyakova L.I., Zeleneva T.Yu., Golubev S.N., Kamennova E.B., Kovalenko E.P. Study of azospirilla isolated from cereals grown in Saratov region. In: Proc. 1st European Nitrogen Fixation Conference. Szeged, August 28-September 2, 1994. Szeged, 1994a;260-264.
58. Nikoforov V.V., Kozel E.A., Shneerson V.V., Pozdnyakova L.I., Fedorova L.S. Restriction endonucleases of the genus Azospirillum isolated from cereals of the Saratov region. Molekulyarnaya Genetika, Mikrobiologiya i Virusologiya = Molecular Genetics, Microbiology, and Virology. 1994b;4:12. (in Russian)
59. Patent RU 2403102 С1, IPC В09С 1/10. Method of Phytoremediation of Soil Contaminated with Hydrocarbons (versions). Inventors: A.Ju. Muratova, A.D. Bondarenkova, S.N. Golubev, L.V. Panchenko, O.V. Turkovskaja. Appl. 15.05.2009. Publ. 10.11.2010. Bull. No. 31. (in Russian)
60. Peng G., Wang H., Zhang G., Hou W., Liu Y., Wang E.T., Tan Z. Azospirillum melinis sp. nov., a group of diazotrophs isolated from tropical molasses grass. Int. J. Syst. Evol. Microbiol. 2006; 56(6):1263-1271. DOI 10.1099/ijs.0.64025-0.
61. Pereg L., de-Bashan L.E., Bashan Y Assessment of affinity and specificity of Azospirillum for plants. Plant Soil. 2016;399(1-2): 389-414. DOI 10.1007/s11104-015-2778-9.
62. Pozdnyakova L.I., Kanevskaya S.V., Levanova G.F., Baryshe-va N.N., Pilipenko T.Yu., Bogatyrev V.A., Fedorova L.S. Taxonomic studies of Azospirillum isolated from cereals in the Saratov region. Mikrobiologiya = Microbiology (Moscow). 1988; 57(2):275-278. (in Russian)
63. Recommendations of the “round table” on the topic “On improving legislative support for the conservation of biological collections for the development of the biotechnological industry of the Russian Federation”. In: Issues of Legal Support for Scientific, Technical and Innovative Activities: an informational and analytical compilation based on materials from an extended field session and a round table. Moscow: Publication of the State Duma, 2011;176-180. (in Russian)
64. Reinhold B., Hurek T., Fendrik I., Pot B., Gillis M., Kertsers K., Thielemans D., De Ley J. Azospirillum halopraeferans sp. nov., a nitrogen fixing organism associated with roots of kallar grass [Leptochloa fusca (L.) Kunth.]. Int. J. Syst. Bacteriol. 1987; 37(1):43-51. DOI 10.1099/00207713-37-1-43.
65. Shchyogolev S.Yu. On prokaryote taxonomy: topical problems and ways out of the crisis. Vestnik Biotekhnologii i Fiziko-Khimi-cheskoy Biologii imeni Yu.A. Ovchinnikova = Yu.A. Ovchinnikov Bulletin of Biotechnology and Physical and Chemical Biology. 2018;14(1):5-14. (in Russian)
66. Schelud’ko A.V., Makrushin K.V., Tugarova A.V., Krestinen-ko V.A., Panasenko VI., Antonyuk L.P., Katsy E.I. Changes in motility of the rhizobacterium Azospirillum brasilense in the presence of plant lectins. Microbiol. Res. 2009;164(2):149-156. DOI 10.1016/j.micres. 2006.11.008.
67. Shelud’ko A.V, Shirokov A.A., Sokolova M.K., Sokolov O.I., Petrova L.P., Matora L.Yu., Katsy E.I. Wheat root colonization by Azospirillum brasilense strains with different motility. Microbiology (Moscow). 2010;79(5):688-695. DOI 10.1134/S0026261710050140.
68. Shirokov A.A., Budanova A.A., Burov A.M., Khlebtsov B.N., Kra-sov A.I., Shchyogolev S.Yu., Matora L.Yu. Immunoelectron microscopy investigation of the cell surface of Azospirillum brasi-lense strains. Microbiology (Moscow). 2017;86(4):487-492. DOI 10.1134/S0026261717040142.
69. Shirokov A.A., Krasov A.I., Selivanov N.Yu., Burygin G.L., Shchegolev S.Yu., Matora L.Yu. Immunochemical detection of azospirilla in soil with genus-specific antibodies. Microbiology (Moscow). 2015;84(2):263-267. DOI 10.1134/S0026261715020137.
70. Tarrand J., Krieg N., Dobereiner J. A taxonomic study of the Spirillum lipoferum group with descriptions of a new genus Azospirillum gen. nov. two species, Azospirillum lipofeum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can. J. Microbiol. 1978;24(8):967-980. DOI 10.1139/m78-160.
71. Tikhonova E.N., Grouzdev D.S., Kravchenko I.K. Azospirillum palustre sp. nov., a methylotrophic nitrogen-fixing species isolated from raised bog. Int. J. Syst. Evol. Microbiol. 2019; 69(9):2787-2793. DOI 10.1099/ijsem.0.003560.
72. Tikhonovich I.A., Provorov N.A. Symbiosis of Plants and Microorganisms: The Molecular Genetics of the Agrosystems of the Future. St. Petersburg, 2009. (in Russian)
73. Tkachenko O.V, Evseeva N.V, Boikova N.V, Matora L.Yu., Burygin G.L., Lobachev Yu.V, Shchyogolev S.Yu. Improved potato microclonal reproduction with the plant-growth promoting rhi-zobacteria Azospirillum. Agron. Sustain. Dev. 2015;35(3):1167-1174. DOI 10.1007/s13593-015-0304-3.
74. Tugarova A., Mamchenkova P., Dyatlova Y., Kamnev A. Biochemical study of selenite bioconversion by Azospirillum brasilense. FEBS Open Bio. 2018;8(S1):479-480. DOI 10.1002/2211-5463.12446.
75. Tugarova A.V., Burov A.M., Burashnikova M.M., Kamnev A.A. Gold(III) reduction by the rhizobacterium Azospirillum brasi-lense with the formation of gold nanoparticles. Microb. Ecol. 2014a;67(1):155-160. DOI 10.1007/s00248-013-0329-6.
76. Tugarova A.V, Shelud’ko A.V., Dyatlova Yu.A., Filip’echeva Yu.A., Kamnev A.A. FTIR spectroscopic study of biofilms formed by the rhizobacterium Azospirillum brasilense Sp245 and its mutant Azospirillum brasilense Sp245.1610. J. Mol. Struct. 2017;1140:142-147. DOI 10.1016/j.molstruc.2016.12.063.
77. Tugarova A.V, Vetchinkina E.P., Loshchinina E.A., Burov A.M., Nikitina VE., Kamnev A.A. Reduction of selenite by Azospirillum brasilense with the formation of selenium nanoparticles. Microb. Ecol. 2014b;68(3):495-503. DOI 10.1007/s00248-014-0429-y.
78. Tyagi S., Singh D.K. Azospirillum himalayense sp. nov., a nifH bacterium isolated from Himalayan valley soil, India. Ann. Microbiol. 2014;64(1):259-266. DOI 10.1007/s13213-013-0658-1.
79. Wisniewski-Dye F., Borziak K., Khalsa-Moyers G., Alexandre G., Sukharnikov L.O., Wuichet K., Hurst G.B., McDonald W.H., Robertson J.S., Barbe V, Calteau A., Rouy Z., Mangenot S., Prigent-Combaret C., Normand Ph., Boyer M., Siguier P., Des-saux Y., Elmerich C., Condemine G., Krishnen G., Kennedy I., Paterson A.H., Gonzalez V, Mavingui P., Zhulin I.B. Azospirillum genomes reveal transition of bacteria from aquatic to terrestrial environments. PLoS Genet. 2011;7(12):e1002430. DOI 10.1371/joumal.pgen.1002430.
80. Xie C.-H., Yokota A. Azospirillum oryzae sp. nov., a nitrogen-fixing bacterium isolated from the roots of the rice plant Oryza sativa. Int. J. Syst. Evol. Microbiol. 2005;55(4):1435-1438. DOI 10.1099/ijs.0.63503-0.
81. Yang Y., Zhang R., Feng J., Wang C., Chen J. Azospirillum griseum sp. nov., isolated from lakewater. Int. J. Syst. Evol. Microbiol. 2019;69:3676. DOI 10.1099/ijsem.0.003460.
82. Yegorenkova I.V, Konnova S.A., Sachuk V.N., Ignatov V.V. Azospirillum brasilense colonisation of wheat roots and the role of lectin-carbohydrate interactions in bacterial adsorption and root-hair deformation. Plant Soil. 2001;231(2):275-282. DOI 10.1023/A:1010340700694.
83. Young C.C., Hupfer H., Siering C., Ho M.-J., Arun A.B., Lai W.-A., Rekha P.D., Shen F.-T., Hung M.-H., Chen W.-M., Yassin A.F. Azospirillum rugosum sp. nov., isolated from oil-contaminated soil. Int. J. Syst. Evol. Microbiol. 2008;58(4):959-963. DOI 10.1099/ijs.0.65065-0.
84. Zhou S., Han L., Wang Y, Yang G., Zhuang L., Hu P. Azospirillum humicireducens sp. nov., a nitrogen-fixing bacterium isolated from amicrobial fuel cell. Int. J. Syst. Evol. Microbiol. 2013;63(7):2618-2624. DOI 10.1099/ijs.0.046813-0.
85. Zhou Y, Wei W., Wang X., Xu L., Lai R. Azospirillum palatum sp. nov., isolated from forest soil in Zhejiang province, China. J. Gen. Appl. Microbiol. 2009;55(1):1-7. DOI 10.2323/jgam.55.1.