Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Референсный транскриптом микоризованных корней гороха посевного (Pisum sativum L.) с высоким покрытием

https://doi.org/10.18699/VJ20.625

Полный текст:

Аннотация

Арбускулярная микориза (AM) – это древний мутуалистический симбиоз, который образуют 8090 % видов наземных растений с облигатно биотрофными грибами, принадлежащими к филе Glomeromycota. Этот симбиоз является взаимовыгодным, поскольку грибы AM питаются продуктами фотосинтеза растений, в свою очередь повышая эффективность поглощения питательных веществ растением из окружающей среды. Горох (Pisum sativum L.), широко распространенная сельскохозяйственная культура и важный модельный объект генетики, способен образовывать тройные симбиотические системы, состоящие из растения, грибов AM и клубеньковых бактерий. По мере распространения транскриптомных и протеомных подходов в изучении мутуалистических симбиозов гороха, для повышения разрешающей способности и точности других методов возникла необходимость в референсном транскриптоме, т. е. в знании последовательностей генов, экспрессирующихся в различных экспериментальных условиях. Многочисленные транскриптомные сборки, сконструированные для гороха, не включали микоризованные корни, поэтому целью данного исследования было создание референсной транскриптомной сборки микоризованных корней. Было проведено глубокое РНК-секвенирование транскриптома микоризованных корней Pisum sativum сорта Frisson, инокулированных Rhizophagus irregularis BEG144, и для каждого из организмов получены независимые транскриптомные сборки (покрытие 177х для транскриптома гороха и 45x для транскриптома гриба). Качество сборки транскриптома гороха оценено путем сравнения с уже имеющимися сборками транскриптомов других тканей. Для дополнительной оценки качества сборки, у двух сортов гороха (Frisson и Finale) с помощью qPCR проведен анализ экспрессии генов, специфичных для микоризованных корней, последовательности которых были найдены в созданной сборке. Исследованные гены могут служить маркерами ранних стадий развития арбускулярной микоризы у генетически разнообразных сортов гороха.

Об авторах

А. М. Афонин
Всероссийский научно-исследовательский институт сельскохозяйственной микробиологии
Россия
г. Пушкин, Санкт-Петербург


И. В. Леппянен
Всероссийский научно-исследовательский институт сельскохозяйственной микробиологии
Россия
г. Пушкин, Санкт-Петербург


О. А. Кулаева
Всероссийский научно-исследовательский институт сельскохозяйственной микробиологии
Россия
г. Пушкин, Санкт-Петербург


О. Ю. Штарк
Всероссийский научно-исследовательский институт сельскохозяйственной микробиологии
Россия
г. Пушкин, Санкт-Петербург


И. А. Тихонович
Всероссийский научно-исследовательский институт сельскохозяйственной микробиологии; Санкт-Петербургский государственный университет, факультет биологии
Россия

г. Пушкин
Санкт-Петербург



Е. А. Долгих
Всероссийский научно-исследовательский институт сельскохозяйственной микробиологии
Россия
г. Пушкин, Санкт-Петербург


В. А. Жуков
Всероссийский научно-исследовательский институт сельскохозяйственной микробиологии
Россия
г. Пушкин, Санкт-Петербург


Список литературы

1. Alizadeh O. Mycorrhizal symbiosis. Adv. Stud. Biol. 2011;3(6):273281.

2. Alves-Carvalho S., Aubert G., Carrère S., Cruaud C., Brochot A.L., Jacquin F., Klein A., Martin C., Boucherot K., Kreplak J., Da Silva C., Moreau S., Gamas P., Wincker P., Gouzy J., Burstin J. Full-length de novo assembly of RNA-seq data in pea (Pisum sativum L.) provides a gene expression atlas and gives insights into root nodulation in this species. Plant J. 2015;84(1):1-19. DOI 10.1111/tpj.12967.

3. Bankevich A., Nurk S., Antipov D., Gurevich A.A., Dvorkin M., Kulikov A.S., Lesin V.M., Nikolenko S.I., Pham S., Prjibelski A.D., Pyshkin A.V., Sirotkin A.V., Vyahhi N., Tesler G., Alekseyev M.A., Pevzner P.A. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012;19(5): 455-477. DOI 10.1089/cmb.2012.0021.

4. Borisov A., Vasil’chikov A., Voroshilova V., Danilova T., Zhernakov A., Zhukov V., Koroleva T., Kuznetsova E., Madsen L., Mofett M., Naumkina T., Nemankin T., Ovchinnikova E., Pavlova Z., Petrova N., Pinaev A., Radutoiu S., Rozov S., Rychagova T., Solovov I., Stougaard J., Topunov A., Weeden N., Tsyganov V., Shtark O., Tikhonovich I. Regulatory genes of garden pea (Pisum sativum L.) controlling the development of nitrogen-fixing nodules and arbuscular mycorrhiza: a review of basic and applied aspects. Appl. Biochem. Microbiol. 2007;43(3):237-243. DOI 10.1134/S0003683807030027.

5. Borisov A.Y., Danilova T.N., Koroleva T.A., Naumkina T.S., Pavlova Z.B., Pinaev A.G., Shtark O.Y., Tsyganov V.E., Voroshilova V.A., Zhernakov A.I., Zhukov V.A., Tikhonovich I.A. Pea (Pisum sativum L.) regulatory genes controlling development of nitrogenfixing nodule and arbuscular mycorrhiza: fundamentals and application. Biologia (Bratislava). 2004;59(13):137-144.

6. Bushnell B. BBMap. 2014. Available at: sourceforge.net/projects/bbmap/

7. Davidson N.M., Hawkins A.D.K., Oshlack A. SuperTranscripts: a data driven reference for analysis and visualisation of transcriptomes. Genome Biol. 2017;18:148. DOI 10.1186/s13059-017-1284-1.

8. Demchenko K., Winzer T., Stougaard J., Parniske M., Pawlowski K. Distinct roles of Lotus japonicus SYMRK and SYM15 in root colonization and arbuscule formation. New Phytol. 2004;163(2):381-392. DOI 10.1111/j.1469-8137.2004.01123.x.

9. Duc G., Messager A. Mutagenesis of pea (Pisum sativum L.) and the isolation of mutants for nodulation and nitrogen fixation. Plant Sci. 1989;60(2):207-213. DOI 10.1016/0168-9452(89)90168-4.

10. Engvild K.C. Nodulation and nitrogen fixation mutants of pea, Pisum sativum. Theor. Appl. Genet. 1987;74(6):711-713. DOI 10.1007/BF00247546.

11. Franssen S.U., Shrestha R.P., Bräutigam A., Bornberg-Bauer E., Weber A.P. Comprehensive transcriptome analysis of the highly complex Pisum sativum genome using next generation sequencing. BMC Genomics. 2011;12(1):227. DOI 10.1186/1471-2164-12-227.

12. Gobbato E. Recent developments in arbuscular mycorrhizal signaling. Curr. Opin. Plant Biol. 2015;26:1-7. DOI 10.1016/j.pbi.2015.05.006.

13. Goodstein D.M., Shu S., Howson R., Neupane R., Hayes R.D., Fazo J., Mitros T., Dirks W., Hellsten U., Putnam N., Rokhsar D.S. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 2012;40(D1):D1178-D1186. DOI 10.1093/nar/gkr944.

14. Grabherr M.G., Haas B.J., Yassour M., Levin J.Z., Thompson D.A., Amit I., Adiconis X., Fan L., Raychowdhury R., Zeng Q., Chen Z., Mauceli E., Hacohen N., Gnirke A., Rhind N., di Palma F., Birren B.W., Nusbaum C., Lindblad-Toh K., Friedman N., Regev A. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011;29(7):644-652. DOI 10.1038/nbt.1883.

15. Grunwald U., Nyamsuren O., Tamasloukht M., Lapopin L., Becker A., Mann P., Gianinazzi-Pearson V., Krajinski F., Franken P. Identification of mycorrhiza-regulated genes with arbuscule development-related expression profile. Plant Mol. Biol. 2004;55(4):553-566. DOI 10.1007/s11103-004-1303-y.

16. Gutjahr C., Parniske M. Cell and developmental biology of arbuscular mycorrhiza symbiosis. Annu. Rev. Cell Dev. Biol. 2013;29(1):593-617. DOI 10.1146/annurev-cellbio-101512-122413.

17. Hoagland D.R., Arnon D.I. The water-culture method for growing plants without soil. Circular. California Agric. Exp. Station. 1950; 347(2).

18. Huerta-Cepas J., Szklarczyk D., Forslund K., Cook H., Heller D., Walter M.C., Rattei T., Mende D.R., Sunagawa S., Kuhn M., Jensen L.J., von Mering C., Bork P. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 2016;44(D1):D286D293. DOI 10.1093/nar/gkv1248.

19. Jacobi L.M., Kukalev A.S., Ushakov K.V., Tsyganov V.E., Provorov N.A., Borisov A.Y., Tikhonovich I. Genetic variability of garden pea (Pisum sativum L.) for symbiotic capacities. Pisum Genet. 1999; 31:44-45.

20. Kaschuk G. Sink Stimulation of Leaf Photosynthesis by the Carbon Costs of Rhizobial and Arbuscular Mycorrhizal Fungal Symbioses. Wageningen, Wageningen Univ., S.n., 2009.

21. Kerr S.C., Gaiti F., Beveridge C.A., Tanurdzic M. De novo transcriptome assembly reveals high transcriptional complexity in Pisum sativum axillary buds and shows rapid changes in expression of diurnally regulated genes. BMC Genomics. 2017;18(1):221. DOI 10.1186/s12864-017-3577-x.

22. Kreplak J., Madoui M.A., Cápal P., Novák P., Labadie K., Aubert G., Bayer P.E., Gali K.K., Syme R.A., Main D., Klein A., Bérard A., Vrbová I., Fournier C., D’Agata L., Belser C., Berrabah W., Toegelová H., Milec Z., Vrána J., Lee H.T., Kougbeadjo A., Térézol M., Huneau C., Turo C.J., Mohellibi N., Neumann P., Falque M., Gallardo K., McGee R., Tar’an B., Bendahmane A., Aury J.M., Batley J., Le Paslier M.C., Ellis N., Warkentin T.D., Coyne C.J., Salse J., Edwards D., Lichtenzveig J., Macas J., Doležel J., Wincker P., Burstin J. A reference genome for pea provides insight into legume genome evolution. Nat. Genet. 2019;51(9):1411-1422. DOI 10.1038/s41588-019-0480-1.

23. Leppyanen I.V., Shakhnazarova V.Y., Shtark O.Y., Vishnevskaya N.A., Tikhonovich I.A., Dolgikh E.A. Receptor-like kinase LYK9 in Pisum sativum L. is the CERK1-like receptor that controls both plant immunity and AM symbiosis development. Int. J. Mol. Sci. 2018; 19:8. DOI 10.3390/ijms19010008.

24. Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001;25(4):402-408. DOI 10.1006/meth.2001.1262.

25. Lu G. Vector NTI, a balanced all-in-one sequence analysis suite. Brief. Bioinformatics. 2004;5(4):378-388. DOI 10.1093/bib/5.4.378.

26. Mamontova T., Afonin A.M., Ihling C., Soboleva A., Lukasheva E., Sulima A.S., Shtark O.Y., Akhtemova G.A., Povydysh M.N., Sinz A., Frolov A., Zhukov V.A., Tikhonovich I.A. Profiling of seed proteome in pea (Pisum sativum L.) lines characterized with high and low responsivity to combined inoculation with nodule bacteria and arbuscular mycorrhizal fungi. Molecules. 2019;24(8):1603. DOI 10.3390/molecules24081603.

27. Manck-Götzenberger J., Requena N. Arbuscular mycorrhiza symbiosis induces a major transcriptional reprogramming of the potato SWEET sugar transporter family. Front. Plant Sci. 2016;7:487. DOI 10.3389/fpls.2016.00487.

28. Morandi D., Sagan M., Prado-Vivant E., Duc G. Influence of genes determining supernodulation on root colonization by the mycorrhizal fungus Glomus mosseae in Pisum sativum and Medicago truncatula mutants. Mycorrhiza. 2000;10(1):37-42. DOI 10.1007/s005720050285.

29. Murray J.D., Muni R.R.D., Torres-Jerez I., Tang Y., Allen S., Andriankaja M., Li G., Laxmi A., Cheng X., Wen J., Vaughan D., Schultze M., Sun J., Charpentier M., Oldroyd G., Tadege M., Ratet P., Mysore K.S., Chen R., Udvardi M.K. Vapyrin, a gene essential for intracellular progression of arbuscular mycorrhizal symbiosis, is also essential for infection by rhizobia in the nodule symbiosis of Medicago truncatula. Plant J. 2011;65(2):244-252. DOI 10.1111/j.1365-313X.2010.04415.x.

30. Park H.J., Floss D.S., Levesque-Tremblay V., Bravo A., Harrison M.J. Hyphal branching during arbuscule development requires Reduced Arbuscular Mycorrhiza1. Plant Physiol. 2015;169(4):2774-2788. DOI 10.1104/pp.15.01155.

31. Pimprikar P., Gutjahr C. Transcriptional regulation of arbuscular mycorrhiza development. Plant Cell Physiol. 2018;59(4):876. DOI 10.1093/pcp/pcy024.

32. Pumplin N., Mondo S.J., Topp S., Starker C.G., Gantt J.S., Harrison M.J. Medicago truncatula Vapyrin is a novel protein required for arbuscular mycorrhizal symbiosis. Plant J. 2010;61(3):482-494. DOI 10.1111/j.1365-313X.2009.04072.x.

33. Shtark O.Y., Danilova T.N., Naumkina T.S., Vasilchikov A.G., Chebotar V.K., Kazakov A.E., Zhernakov A.I., Nemankin T.A., Prilepskaya N.A., Borisov A.U., Tikhonovich I.A. Analysis of pea (Pisum sativum L.) source material for breeding of cultivars with high symbiotic potential and choice of criteria for its evaluation. Ecol. Genet. 2006;4(2):22-28. DOI 10.17816/ecogen4222-28.

34. Shtark O.Y., Sulima A.S., Zhernakov A.I., Kliukova M.S., Fedorina J.V., Pinaev A.G., Kryukov A.A., Akhtemova G.A., Tikhonovich I.A., Zhukov V.A. Arbuscular mycorrhiza development in pea (Pisum sativum L.) mutants impaired in five early nodulation genes including putative orthologs of NSP1 and NSP2. Symbiosis. 2016; 68(1-3):129-144. DOI 10.1007/s13199-016-0382-2.

35. Siddiqui Z.A., Akhtar M.S., Futai K. (Eds.). Mycorrhizae: Sustainable Agriculture and Forestry. Springer, 2008. DOI 10.1007/978-1-4020-8770-7.

36. Simão F.A., Waterhouse R.M., Ioannidis P., Kriventseva E.V., Zdobnov E.M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31(19): 3210-3212. DOI 10.1093/bioinformatics/btv351.

37. Solaiman Z., Abbott L.K., Varma A. (Eds.). Mycorrhizal Fungi: Use in Sustainable Agriculture and Land Restoration. Springer, Berlin, Heidelberg, 2014. DOI 10.1007/978-3-662-45370-4.

38. Sudheesh S., Sawbridge T.I., Cogan N.O., Kennedy P., Forster J.W., Kaur S. De novo assembly and characterisation of the field pea transcriptome using RNA-Seq. BMC Genomics. 2015;16(1):611. DOI 10.1186/s12864-015-1815-7.

39. Tikhonovich I.A., Andronov E.E., Borisov A.Y., Dolgikh E.A., Zhernakov A.I., Zhukov V.A., Provorov N.A., Roumiantseva M.L., Simarov B.V. The principle of genome complementarity in the enhancement of plant adaptive capacities. Russ. J. Genet. 2015;51(9): 831-846. DOI 10.1134/S1022795415090124.

40. Tisserant E., Kohler A., Dozolme-Seddas P., Balestrini R., Benabdellah K., Colard A., Croll D., … Shachar-Hill Y., Tuskan G., Young J.P.W., Gianinazzi-Pearson V., Martin F. The transcriptome of the arbuscular mycorrhizal fungus Glomus intraradices (DAOM 197198) reveals functional tradeoffs in an obligate symbiont. New Phytol. 2012;193(3):755-769. DOI 10.1111/j.1469-8137.2011.03948.x.

41. Tisserant E., Malbreil M., Kuo A., Kohler A., Symeonidi A., Balestrini R., Charron P., … Rensing S.A., Grigoriev I.V., Corradi N., Roux C., Martin F. Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc. Natl. Acad. Sci. USA. 2013;110(50):20117-20122. DOI 10.1073/pnas.1313452110.

42. Trapnell C., Williams B.A., Pertea G., Mortazavi A., Kwan G., Van Baren M.J., Salzberg S.L., Wold B.J., Pachter L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 2010;28(5):511-515. DOI 10.1038/nbt.1621.

43. Trouvelot A., Kough J.L., Gianinazzi-Pearson V. Mesure du taux de mycorhization VA d’un système radiculaire. Recherche de méthodes d’estimation ayant une signification fonctionnelle. Mycorhizae: Physiologie et Génétique. 1986;217-221.

44. Young N.D., Debellé F., Oldroyd G.E.D., Geurts R., Cannon S.B., Udvardi M.K., Benedito V.A., … Schwartz D.C., Rogers J., Quétier F., Town C.D., Roe B.A. The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature. 2011;480:520-524. DOI 10.1038/nature10625.

45. Zhernakov A.I., Shtark O.Y., Kulaeva O.A., Fedorina J.V., Afonin A.M., Kitaeva A.B., Tsyganov V.E., Afonso-Grunz F., Hoffmeier K., Rotter B., Winter P., Tikhonovich I.A., Zhukov V.A. Mapping-by-sequencing using NGS-based 3′-MACE-Seq reveals a new mutant allele of the essential nodulation gene Sym33 (IPD3) in pea (Pisum sativum L.). PeerJ. 2019;7. DOI 10.7717/peerj.6662.

46. Zhukov V.A., Akhtemova G.A., Zhernakov A.I., Sulima A.S., Shtark O.Yu., Tikhonovich I.A. Evaluation of the symbiotic effectiveness of pea (Pisum sativum L.) genotypes in pot experiment. Sel’skokhozyaistvennaya Biologiya = Agricultural Biology. 2017; 52(3):607-614. DOI 10.15389/agrobiology.2017.3.607eng.

47. Zhukov V.A., Shtark O.Y., Nemankin T.A., Kryukov A.A., Borisov A.Y., Tikhonovich I.A. Genetic mapping of pea (Pisum sativum L.) genes involved in symbiosis. Sel’skokhozyaistvennaya Biologiya = Agricultural Biology. 2016;51(5):593-601. DOI 10.15389/agrobiology.2016.5.593eng.

48. Zhukov V.A., Shtark O.Y., Puzanskiy R.K., Avdeeva G.S., Yurkov A.P., Smolikova G.N., Yemelyanov V.V., Kliukova M.S., Shavarda A.L., Kirpichnikova A.A., Zhernakov A.I., Afonin A.M., Tikhonovich I.A., Shishova M.F. Metabolic alterations in pea leaves during arbuscular mycorrhiza development. PeerJ. 2019; DOI 10.7717/peerj.7495.

49. Zhukov V.A., Zhernakov A.I., Kulaeva O.A., Ershov N.I., Borisov A.Y., Tikhonovich I.A. De novo assembly of the pea (Pisum sativum L.) nodule transcriptome. Int. J. Genomics. 2015:695947. DOI 10.1155/2015/695947.

50. Zorin E.A., Kliukova M.S., Kulaeva O.A., Afonin A.M., Tikhonovich I.A., Zhukov V.A. Identification of sequences encoding for NCR-peptides and defensins in the “meta-assembly” of transcriptome of pea (Pisum sativum L.) nitrogen-fixing nodules. Ecol. Genet. 2019;17(3):39-46. DOI 10.17816/ecogen17339-17346.


Просмотров: 91


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-0462 (Print)
ISSN 2500-3259 (Online)