Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Анализ цветовых и текстурных характеристик зерен злаков на цифровых изображениях

https://doi.org/10.18699/VJ20.626

Полный текст:

Аннотация

Цвет оболочки зерен злаков – важный признак, характеризующий содержащиеся в ней пигменты и метаболиты. Оболочка зерна служит основным барьером между зерном и внешней средой, поэтому с ее характеристиками связан ряд важных биологических функций: поглощение влаги, жизнеспособность зерна, устойчивость к предуборочному прорастанию. Наличие пигментов в оболочке влияет на различные технологические свойства зерна. Цветовые характеристики, как и внешний вид оболочки зерна, – важный индикатор заболеваний растений. Цвет зерна давно используется в систематике пшеницы для описания ее ботанических разновидностей, и для некоторых систем это одна из основных характеристик. Генетический контроль формирования окраски зерен и других органов растений осуществляется генами, кодирующими ферменты, вовлеченные в биосинтез пигментов, и регуляторными генами. Для ряда пигментов эти гены исследованы достаточно хорошо, однако для некоторых пигментов, например меланина, обусловливающего черную окраску зерен у ячменя, молекулярные механизмы биосинтеза еще слабо изучены. При исследовании механизмов генетического контроля окраски зерен селекционеры и генетики постоянно сталкиваются с необходимостью оценки цветовых характеристик их оболочки. К техническим средствам решения этой задачи относятся спектрофотометры, спектрометры, гиперспектральные камеры. Однако эти камеры дорогостоящие, в особенности с высоким разрешением, как пространственным, так и спектральным. Альтернативой является использование цифровых фотокамер, позволяющих получать высококачественные изображения с высоким пространственным и цветовым разрешением. В связи с этим в последнее время в области фенотипирования растений интенсивно развиваются методы оценки цветовых и текстурных характеристик зерен злаков, основанные на анализе двумерных изображений, полученных цифровыми камерами. Данный мини-обзор посвящен основным задачам, связанным с анализом цветовых и текстурных характеристик зерен злаков, методам их описания на основе цифровых изображений.

Об авторах

Е. Г. Комышев
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук; Курчатовский геномный центр Федерального исследовательского центра Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия
Новосибирск


М. А. Генаев
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук; Курчатовский геномный центр Федерального исследовательского центра Институт цитологии и генетики Сибирского отделения Российской академии наук; Новосибирский национальный исследовательский государственный университет
Россия
Новосибирск


Д. А. Афонников
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук; Курчатовский геномный центр Федерального исследовательского центра Институт цитологии и генетики Сибирского отделения Российской академии наук; Новосибирский национальный исследовательский государственный университет
Россия
Новосибирск


Список литературы

1. Adzhieva V.F., Babak O.G., Shoeva O.Yu., Kilchevsky A.V., Khlestkina E.K. Molecular-genetic mechanisms underlying fruit and seed coloration in plants. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2015;19(5): 561-573. DOI 10.18699/VJ15.073. (in Russian)

2. Ahmad I.S., Reid J.F., Paulsen M.R., Sinclair J.B. Color classifier for symptomatic soybean seeds using image processing. Plant Dis. 1999;83(4):320-327. DOI 10.1094/PDIS.1999.83.4.320.

3. Alemu A., Feyissa T., Tuberosa R., Maccaferri M., Sciara G., Letta T., Abeyo B. Genome-wide association mapping for grain shape and color traits in Ethiopian durum wheat (Triticum turgidum ssp. durum). Crop. J. 2020. DOI 10.1016/j.cj.2020.01.001.

4. Astafurov V.G., Evsyutkin T.V., Kuriyanovich K.V., Skorokhodov A.V. Statistical model of cirrus cloud textural features based on MODIS satellite images. Optika Atmosphery i Okeana = Atmospheric and Oceanic Optics. 2014;27(07):640-646. (in Russian)

5. Berry J.C., Fahlgren N., Pokorny A.A., Bart R.S., Veley K.M. An automated, high-throughput method for standardizing image color profiles to improve image-based plant phenotyping. PeerJ. 2018;6:5727. DOI 10.7717/peerj.5727.

6. Black C.K., Panozzo J.F. Accurate technique for measuring color values of grain and grain products using a visible‐NIR instrument. Cereal Chem. 2004;81(4):469-474. DOI 10.1094/CCHEM.2004.81.4.469.

7. Chaugule A., Mali S.N. Evaluation of texture and shape features for classification of four paddy varieties. J. Engineer. 2014. DOI 10.1155/2014/617263.

8. Corrêa R.C.G., Garcia J.A.A., Correa V.G., Vieira T.F., Bracht A., Peralta R.M. Pigments and vitamins from plants as functional ingredients: Current trends and perspectives. Adv. Food Nutr. Res. 2019; 90:259-303. DOI 10.1016/bs.afnr.2019.02.003.

9. Delwiche S.R., Yang I.C., Graybosch R.A. Multiple view image analysis of freefalling US wheat grains for damage assessment. Comput. Electron. Agr. 2013;98:62-73. DOI 10.1016/j.compag.2013.07.002.

10. Domasev M.V., Gnatyk S.P. Color, Color Management, Color Calculations and Measurements. St. Petersburg: Piter Publ., 2009. (in Russian)

11. Dorofeev V.F., Filatenko A.A., Migushova E.F., Udachin R.A., Yakubtsiner M.M. The Cultural Flora of the USSR. Vol. 1. Wheat. Leningrad: Kolos Publ., 1979. (in Russian)

12. Draz I.S., El-Gremi S.M., Youssef W.A. Response of Egyptian wheat cultivars to kernel black point disease alongside grain yield. Pak. J. Phytopathol. 2016;28(1):15-17.

13. ElMasry G., Mandour N., Al-Rejaie S., Belin E., Rousseau D. Recent applications of multispectral imaging in seed phenotyping and quality monitoring – An overview. Sensors. 2019;19(5):1090. DOI 10.3390/s19051090.

14. Fakthongphan J., Graybosch R.A., Baenziger P.S. Combining ability for tolerance to pre-harvest sprouting in common wheat (Triticum aestivum L.). Crop Sci. 2016;56(3):1025-1035. DOI 10.2135/cropsci2015.08.0490.

15. Fisenko V.T., Fisenko T.Yu. Computer Processing and Image Recognition: Tutorial. St. Petersburg, 2008. (in Russian)

16. Flintham J., Adlam R., Bassoi M., Holdsworth M., Gale M. Mapping genes for resistance to sprouting damage in wheat. Euphytica. 2002;126:39-45. DOI 10.1023/A:1019632008244.

17. Forsyth D., Ponce J. Computer Vision: A Modern Approach. Prentice Hall, 2003. (Russ. ed. Forsayt D., Pons Zh. Komp’yuternoe Zrenie. Sovremennyy Podkhod. Moscow: Williams, 2004.)

18. Galloway M.M. Texture analysis using grey level run lengths. Сomput. Graphics Image Process. 1975;4:172-179.

19. Garg M., Chawla M., Chunduri V., Kumar R., Sharma S., Sharma N.K., Kaur N., Kumar A., Mundey J.K., Saini M.K., Singh S.P. Transfer of grain colors to elite wheat cultivars and their characterization. J. Cereal Sci. 2016;71:138-144. DOI 10.1016/j.jcs.2016.08.004.

20. Genaev M.A., Komyshev E.G., Smirnov N.V., Kruchinina Y.V., Goncharov N.P., Afonnikov D.A. Morphometry of the wheat spike by analyzing 2D images. Agronomy. 2019;9(7):390.

21. Glagoleva A.Y., Shmakov N.A., Shoeva O.Y., Vasiliev G.V., Shatskaya N.V., Börner A., Afonnikov D.A., Khlestkina E.K. Pleiotropic effect of barley Blp locus: metabolic pathways and genes identified by RNA-seq analysis of near-isogenic lines. BMC Plant Biol. 2017;17(Suppl.1):182. DOI 10.1186/s12870-017-1124-1.

22. Gong Z., Cheng F., Cheng F., Liu Z., Yang X., Zhai B., You Z. Recent developments of seeds quality inspection and grading based on machine vision. ASABE Annual International Meeting. 2015;1. DOI 10.13031/aim.20152188378.

23. Goriewa-Duba K., Duba A., Wachowska U., Wiwart M. An evaluation of the variation in the morphometric parameters of grain of six Triticum species with the use of digital image analysis. Agronomy. 2018;8(12):296. DOI 10.3390/agronomy8120296.

24. Haralick R.M. Statistical and structural approaches to texture. Proc. IEEE. 1979;67(5):786-804.

25. Haralick R.M., Shanmugam K., Dinstein I.H. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973;6: 610-621.

26. Huang M., Wang Q.G., Zhu Q.B., Qin J.W., Huang G. Review of seed quality and safety tests using optical sensing technologies. Seed Sci. Technol. 2015;43(3):337-366.

27. Khlestkina E.K. Genes determining coloration of different organs in wheat. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2014;16(1):202-216. (in Russian)

28. Khlestkina E.K., Pshenichnikova T.A., Usenko N.I., Otmakhova Yu.S. Promising opportunities of using molecular genetic approaches for managing wheat grain technological properties in the context of the “grain–flour–bread” chain. Russ J. Genet.: Appl. Res. 2017;7(4):459-476. DOI 10.1134/S2079059717040037.

29. Körnicke F., Werner H. Die Arten und Varietäten des Getreides. In: Handbuch des Getreidebaus. Vol. 1. Berlin, 1885.

30. Krupnov V.A., Antonov G.Yu., Druzhin A.E., Krupnova O.V. Preharvest sprouting resistance in spring bread wheat carrying chromosome 6Ag i (6D) from Agropyron intermedium. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2012;16(2):444-450. (in Russian)

31. Lachman J., Martinek P., Kotíková Z., Orsák M., Šulc M. Genetics and chemistry of pigments in wheat grain – A review. J. Cereal Sci. 2017;74:145-154. DOI 10.1016/j.jcs.2017.02.007.

32. Machálková L., Janečková M., Hřivna L., Dostálová Y., Hernandez J., Mrkvicová E., Vyhnánek T., Trojan V. Impact of added colored wheat bran on bread quality. Acta Univ. Agric. Silvic. 2017;65(1):99-104. DOI 10.11118/actaun201765010099.

33. Majumdar S., Jayas D.S. Classification of bulk samples of cereal grains using machine vision. J. Agric. Eng. Res. 1999;73(1):35-47. DOI 10.1006/jaer.1998.0388.

34. Majumdar S., Jayas D.S. Classification of cereal grains using machine vision: IV. Combined morphology, color, and texture models. Trans. ASAE. 2000;43(6):1689. DOI 10.13031/2013.3069.

35. McCaig T.N., DePauw R.M., Williams P.C. Assessing seed-coat color in a wheat breeding program with a NIR/VIS instrument. Can. J. Plant Sci. 1993;73(2):535-539. DOI 10.4141/cjps93-073.

36. McMullen M., Jones R., Gallenberg D. Scab of wheat and barley: a re-emerging disease of devastating impact. Plant Dis. 1997; 81(12):1340-1348. DOI 10.1094/PDIS.1997.81.12.1340.

37. Olgun M., Onarcan A.O., Özkan K., Işik Ş., Sezer O., Özgişi K., Ayter N.G., Başçiftçi Z.B., Ardiç M., Koyuncu O. Wheat grain classification by using dense SIFT features with SVM classifier. Comput. Electron. Agric. 2016;122:185-190. DOI 10.1016/j.compag.2016.01.033.

38. Pathare P.B., Opara U.L., Al-Said F.A.J. Colour measurement and analysis in fresh and processed foods: A review. Food Bioprocess Technol. 2013;6(1):36-60. DOI 10.1007/s11947-012-0867-9.

39. Patrício D.I., Rieder R. Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review. Comput. Electron. Agric. 2018;153:69-81. DOI 10.1016/j.compag.2018.08.001.

40. Pearson T. High-speed sorting of grains by color and surface texture. Appl. Eng. Agric. 2010;26(3):499-505. DOI 10.13031/2013.29948.

41. Pearson T., Brabec D., Haley S. Color image based sorter for separating red and white wheat. Sens. Instrum. Food Qual. Saf. 2008; 2(4):280-288. DOI 10.1007/s11694-008-9062-0.

42. Pourreza A., Pourreza H.R., Abbaspour-Fard M.H., Sadrnia H. Identification of nine Iranian wheat seed varieties by textural analysis with image processing. Comput. Electron. Agric. 2012; 83:102-108. DOI 10.1016/j.compag.2012.02.005.

43. Ram M.S., Dowell F.E., Seitz L., Lookhart G. Development of standard procedures for a simple, rapid test to determine wheat color class. Cereal Chem. 2002;79(2):230-237. DOI 10.1094/CCHEM.2002.79.2.230.

44. Sabanci K., Ekinci S., Karahan A.M., Aydin C. Weight estimation of wheat by using image processing techniques. J. Image Graph. 2016;4(1):51-54. DOI 10.18178/joig.4.1.51-54.

45. Sabanci K., Toktas A., Kayabasi A. Grain classifier with computer vision using adaptive neuro‐fuzzy inference system. J. Sci. Food Agric. 2017;97(12):3994-4000. DOI 10.1002/jsfa.8264.

46. Septiningsih E.M., Prasetiyono J., Lubis E., Tai T.H., Tjubaryat T., Moeljopawiro S., McCouch S.R. Identification of quantitative trait loci for yield and yield components in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor. Appl. Genet. 2003;107(8): 1419-1432. DOI 10.1007/s00122-003-1373-2.

47. Shen Y., Jin L., Xiao P., Lu Y., Bao J. Total phenolics, flavonoids, antioxidant capacity in rice grain and their relations to grain color, size and weight. J. Cereal Sci. 2009;49(1):106-111. DOI 10.1016/j.jcs.2008.07.010.

48. Shoeva O.Yu., Strygina K.V., Khlestkina E.K. Genes determining the synthesis of flavonoid and melanin pigments in barley. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2018;22(3):333-342. DOI 10.18699/VJ18.369. (in Russian)

49. Souza F.H., Marcos-Filho J.Ú.L.I.O. The seed coat as a modulator of seed-environment relationships in Fabaceae. Braz. J. Bot. 2001; 24(4):365-375. DOI 10.1590/S0100-84042001000400002.

50. Szczypiński P.M., Klepaczko A., Zapotoczny P. Identifying barley varieties by computer vision. Comput. Electron. Agric. 2015; 110:1-8. DOI 10.1016/j.compag.2014.09.016.

51. Szczypiński P.M., Strzelecki M., Materka A., Klepaczko A. MaZda – a software package for image texture analysis. Comput. Methods Prog. Biomed. 2009;94(1):66-76. DOI 10.1016/j.cmpb.2008.08.005.

52. Visen N.S., Paliwal J., Jayas D.S., White N.D.G. Ae – automation and emerging technologies: specialist neural networks for cereal grain classification. Biosyst. Eng. 2002;82(2):151-159. DOI 10.1006/bioe.2002.0064.

53. Žilić S., Serpen A., Akıllıoğlu G., Gökmen V., Vančetović J. Phenolic compounds, carotenoids, anthocyanins, and antioxidant capacity of colored maize (Zea mays L.) kernels. J. Agric. Food Chem. 2012;60(5):1224-1231. DOI 10.1021/jf204367z.


Дополнительные файлы

1. Неозаглавлен
Тема
Тип Прочее
Скачать (313KB)    
Метаданные
Просмотров: 69


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-0462 (Print)
ISSN 2500-3259 (Online)