Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

NGS-секвенирование в селекционно-генетических исследованиях ячменя

https://doi.org/10.18699/VJ20.627

Полный текст:

Аннотация

Ячмень (Hordeum vulgare L.) – один из важнейших видов злаковых растений, используемых в качестве продовольственной и кормовой культуры, а также для пивоварения и производства спирта. В конце прошлого столетия к традиционным методам селекции прибавились методы, основанные на применении ДНКмаркеров. Молекулярные маркеры также активно вовлекаются в процессы молекулярно-генетического картирования и анализа QTL (quantitative trait loci). В 2012 г. было завершено секвенирование генома ячменя, что выявило целый спектр новых возможностей – от более эффективного поиска генов-кандидатов хозяйственно ценных признаков до геномной селекции. В обзоре обобщены результаты работ периода после секвенирования генома ячменя, открывшего новые направления генетики и селекции этой культуры с применением высокопроизводительных методов секвенирования и генотипирования. В рассматриваемый период ведутся интенсивные исследования по идентификации геномных локусов ячменя, ассоциированных с хозяйственно ценными признаками, появились и пополняются ресурсы для работы с геномными данными ячменя и для их депонирования. В последние годы для массового поиска ассоциаций между фенотипом и генотипом используется анализ GWAS (genome wide association studies), широкое применение которого на ячмене стало возможным с 2010 г. благодаря разработанным SNP-чипам, а также методам генотипирования, основанным на прямом NGS-секвенировании (next generation sequencing) выборочных фракций генома. К настоящему времени опубликовано более 80 работ, описывающих результаты GWAS-анализа на ячмене. Идентификация SNP, ассоциированных с хозяйственно ценными признаками, и их преобразование в удобные для скрининга селекционного материала CAPS или KASP-маркеры существенно расширяют возможности маркер-ориентированной селекции ячменя. Кроме того, имеющаяся информация о потенциальных генах-мишенях и качество полногеномной последовательности ячменя представляют достаточную базу для применения технологий геномного редактирования с целью создания исходного материала для селекции сортов с заданными свойствами.

Об авторах

И. В. Розанова
Федеральный исследовательский центр Всероссийский институт генетических ресурсов растений имени Н.И. Вавилова (ВИР); Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия
Санкт-Петербург
Новосибирск


Е. К. Хлесткина
Федеральный исследовательский центр Всероссийский институт генетических ресурсов растений имени Н.И. Вавилова (ВИР); Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия
Санкт-Петербург
Новосибирск


Список литературы

1. Афанасенко О.С. Генетическая защита растений: проблемы и перспективы. Защита и карантин растений. 2016;1:13-16.

2. Брагина М.К., Афонников Д.А., Салина Е.А. Прогресс в секвенировании геномов растений – направления исследований. Вавиловский журнал генетики и селекции. 2019;23(1):38-48. DOI 10.18699/VJ19.459.

3. Короткова А.М., Герасимова С.В., Шумный В.К., Хлесткина Е.К. Гены сельскохозяйственных растений, модифицированные с помощью системы CRISPR/Cas. Вавиловский журнал генетики и селекции. 2017;21(2):250-258. DOI 10.18699/VJ17.244.

4. Хлесткина Е.К. Молекулярные методы анализа структурно-функциональной организации генов. Вавиловский журнал генетики и селекции. 2011;15(4):757-768.

5. Хлесткина Е.К. Молекулярные маркеры в генетических исследованиях и в селекции. Вавиловский журнал генетики и селекции. 2013;17(4/2):1044-1054.

6. Хлесткина Е.К., Шумный В.К. Перспективы использования прорывных технологий в селекции: система CRISPR/Cas9 для редактирования генома растений. Генетика. 2016;52(7):774-787. DOI 10.7868/s0016675816070055.

7. Щапова А.И. О структуре кариотипа и порядке расположения хромосом в интерфазном ядре. Цитология. 1971;13(9):1157-1163.

8. Anamthawat-Jónsson K., Heslop-Harrison J.S. Centromeres, telomeres and chromatin in the interphase nucleus of cereals. Caryologia. 1990;43(3-4):205-213. DOI 10.1080/00087114.1990.10796999.

9. Andrews K.R., Good J.M., Miller M.R., Luikart G., Hohenlohe P.A. Harnessing the power of RADseq for ecological and evolutionary genomics. Nat. Rev. Genet. 2016;17(2):81-92. DOI 10.1038/nrg.2015.28.

10. Appels R., Eversole K., Feuillet C., Keller B., Rogers J., Stein N., Pozniak C.J., ..., Visendi P., Cui L., Du X., Feng K., Nie X., Tong W., Wang L. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science. 2018;361(6403): eaar7191. DOI 10.1126/science.aar7191.

11. Ariyadasa R., Mascher M., Nussbaumer T., Schulte D., Frenkel Z., Poursarebani N., Zhou R., Steuernagel B., Gundlach H., Taudien S., Felder M., Platzer M., Himmelbach A., Schmutzer T., Hedley P.E., Muehlbauer G.J., Scholz U., Koro A., Mayer K.F.X., Waugh R., Langridge P., Graner A., Stein N. A sequence-ready physical map of barley anchored genetically by two million single-nucleotide polymorphisms. Plant Physiol. 2014;164(1):412-423. DOI 10.1104/pp.113.228213.

12. Bayer M.M., Rapazote-Flores P., Ganal M., Hedley P.E., Macaulay M., Plieske J., Ramsay L., Russell J., Shaw P.D., Thomas W., Waugh R. Development and evaluation of a barley 50k iSelect SNP array. Front. Plant Sci. 2017;8:1792. DOI 10.3389/fpls.2017.01792.

13. Blennow A., Jensen S.L., Shaik S.S., Skryhan K., Carciofi M., Holm P.B., Hebelstrup K.H., Tanackovic V. Future cereal starch bioengineering: cereal ancestors encounter gene technology and designer enzymes. Cereal Chem. 2013:90(4):274-287.

14. Botstein D., White R.L., Skolnick M., Davis R.V. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 1980;32:314-331.

15. Chutimanitsakun Y., Nipper R.W., Cuesta-Marcos A., Cistué L., Corey A., Filichkina T., Johnson E.A., Hayes P.M. Construction and application for QTL analysis of a restriction site associated DNA (RAD) linkage map in barley. BMC Genomics. 2011;12(1):4. DOI 10.1186/1471-2164-12-4.

16. Cistué L., Cuesta-Marcos A., Chao S., Echávarri B., Chutimanitsakun Y., Corey A., Filichkina T., Garcia-Mariño N., Romagosa I., Hayes P.M. Comparative mapping of the Oregon Wolfe Barley using doubled haploid lines derived from female and male gametes. Theor. Appl. Genet. 2011;122(7):1399-1410.

17. Close T.J., Bhat P.R., Lonardi S., Wu Y., Rostoks N., Ramsay L., Druka A., Stein N., Svensson J.T., Wanamaker S., Bozdag S., Roose M.L., Moscou M.J., Chao S., Varshney R.K., Szűcs P., Sato K., Hayes P.M., Matthews D.E., Kleinhofs A., Muehlbauer G.J., DeYoung J., Marshall D.F., Madishetty K., Fenton R.D., Condamine P., Graner A., Waugh R. Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics. 2009; 10:582. DOI 10.1186/1471-2164-10-582.

18. Comadran J., Kilian B., Russell J., Ramsay L., Stein N., Ganal M., Shaw P., Bayer M., Thomas W., Marshall D., Hedley P., Tondelli A., Pecchioni N., Francia E., Korzun V., Walther A., Waugh R. Natural variation in a homolog of antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley. Nat. Genet. 2012;44(12):1388-1391. DOI 10.1038/ng.2447.

19. Cowan C.R., Carlton P.M., Cande W.Z. The polar arrangement of telomeres in interphase and meiosis. Rabl organization and the bouquet. Plant Physiol. 2001;125(2):532-538. DOI 10.1104/pp.125.2.532.

20. Darrier B., Russell J., Milner S.G., Hedley P.E., Shaw P.D., Macaulay M., Ramsay L.D., Halpin C., Mascher M., Fleury D.L., Langridge P., Stein N., Waugh R. A comparison of mainstream genotyping platforms for the evaluation and use of barley genetic resources. Front. Plant Sci. 2019;10:1-14. DOI 10.3389/fpls.2019.00544.

21. Davey J.W., Hohenlohe P.A., Etter P.D., Boone J.Q., Catchen J.M., Blaxter M.L. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat. Rev. Genet. 2011;12(7): 499-510. DOI 10.1038/nrg3012.

22. Dong F., Jiang J. Non-rabl patterns of centromere and telomere distribution in the interphase nuclei of plant cells. Chromosome Res. 1998;6(7):551-558. DOI 10.1023/A:1009280425125.

23. Elshire R.J., Glaubitz J.C., Sun Q., Poland J.A., Kawamoto K., Buckler E.S., Mitchell S.E. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One. 2011;6(5): e19379. DOI 10.1371/journal.pone.0019379.

24. Fan J.B., Oliphant A., Shen R., Kermani B.G., Garcia F., Gunderson K.L., Hansen M.J., Steemers F., Butler S.L., Deloukas P., Galver L., Hunt S., Mcbride C., Bibikova M., Rubano T., Chen J., Wickham E., Doucet D., Chang W., Campbell D., Zhang B., Kruglyak S., Bentley D., Haas J., Rigault P., Zhou L., Stuelpnagel J., Chee M.S. Highly parallel SNP genotyping. Cold Spring Harb. Symp. Quant. Biol. 2003;68:69-78. DOI 10.1101/sqb.2003.68.69.

25. Fan X., Zhu J., Dong W., Sun Y., Lv C., Guo B., Xu R. Comparative mapping and candidate gene analysis of SSIIa associated with grain amylopectin content in barley (Hordeum vulgare L.). Front. Plant Sci. 2017;8:1531. DOI 10.3389/fpls.2017.01531.

26. Gerasimova S.V., Hertig C., Korotkova A.M., Otto I., Hiekel S., Kochetov A.V., Kumlehn J., Khlestkina E.K. Converting hulled into naked barley through targeted knock-out of the Nud1 gene. In Vitro Cell. Dev. Biol.-Plant. 2018a;54(Suppl. 1):S101. DOI 10.1007/s11627-018-9923-0.

27. Gerasimova S.V., Korotkova A.M., Hertig C., Hiekel S., Hoffie R., Budhagatapalli N., Otto I., Hensel G., Shumny V.K., Kochetov A.V., Kumlehn J., Khlestkina E.K. Targeted genome modification in protoplasts of a highly regenerable Siberian barley cultivar using RNAguided Cas9 endonuclease. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2018b;22(8):1033-1039. DOI 10.18699/VJ18.447.

28. Ghazvini H., Tekauz A. Virulence diversity in the population of Bipolaris sorokiniana. Plant Dis. 2007;91(7):814-821.

29. Goddard R., Vos S., Steed A., Muhammed A., Thomas K., Griggs D., Ridout C., Nicholson P. Mapping of agronomic traits, disease resistance and malting quality in a wide cross of two-row barley cultivars. Plos One. 2019;14(7):e0219042. DOI 10.1371/journal.pone.0219042.

30. Hayes P., Szucs P. Disequilibrium and association in barley: thinking outside the glass. Proc. Natl. Acad. Sci. USA. 2006;103(49): 1838518386. DOI 10.1007/s00438-006.

31. Hisano H., Meints B., Moscou M.J., Cistue L., Echávarri B., Sato K., Hayes P.M. Selection of transformation-efficient barley genotypes based on TFA (transformation amenability) haplotype and higher resolution mapping of the TFA loci. Plant Cell Rep. 2017;36(4): 611-620. DOI 10.1007/s00299-017-2107-2.

32. Hyne V., Kearsey M.J. QTL analysis: further uses of ‘marker regression’ regression. Theor. Appl. Genet. 1995;91(3):471-476. DOI 10.1007/BF00222975.

33. International Barley Genome Sequencing Consortium; Mayer K.F.X., Waugh R., Brown J.W.S., Schulman A., Langridge P., Platzer M., Fincher G.B., Muehlbauer G.J., Sato K., Close T.J., Wise R.P., Stein N. A physical, genetic and functional sequence assembly of the barley genome. Nature. 2012;491(7426):711-716. DOI 10.1038/nature11543.

34. Jensen J. Estimation of recombination parameters between a quantitative trait locus (QTL) and two marker gene loci. Theor. Appl. Genet. 1989;78(5):613-618. DOI 10.1007/BF00262554.

35. Kearsey M.J., Farquhar A.G.L. QTL analysis in plants; where are we now? Heredity. 1998;80(2):137-142. DOI. 10.1038/sj.hdy.6885001.

36. Konieczny A., Ausubel F.M. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J. 1993;4(2):403-410.

37. Korotkova A.M., Gerasimova S.V., Khlestkina E.K. Current achievements in modifying crop genes using CRISPR/Cas system. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2019;23(1):29-37. DOI 10.18699/vj19.458.

38. Kumar N., Galli M., Ordon J., Stuttmann J., Kogel K.H., Imani J. Further analysis of barley MORC1 using a highly efficient RNA-guided Cas9 gene-editing system. Plant Biotechnol. J. 2018;16(11):1892-1903. DOI 10.1111/pbi.12924.

39. Kumpatla S.P., Buyyarapu R., Abdurakhmonov I.Y., Mammadov J.A. Genomics-assisted plant breeding in the 21st century: technological advances and progress. In: Abdurakhmonov I. (Ed). Plant Breeding. 2012;131-183.

40. Künzel G., Korzun L., Meister A. Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics. 2000;154(1):397-412.

41. Lawrenson T., Shorinola O., Stacey N., Li C., Østergaard L., Patron N., Uauy C., Harwood W. Induction of targeted, heritable mutations in barley and brassica oleracea using RNA-guided Cas9 nuclease. Genome Biol. 2015;16(1):1-13. DOI 10.1186/s13059-015-0826-7.

42. Leng Y., Wang R., Ali S., Zhao M., Zhong S. Sources and genetics of spot blotch resistance to a new pathotype of Cochliobolus sativus in the USDA National small grains collection. Plant Dis. 2016; 100(10):1988-1093. DOI 10.1094/PDIS-02-16-0152-RE.

43. Lorenz A.J., Hamblin M.T., Jannink J.L. Performance of single nucleotide polymorphisms versus haplotypes for genome-wide association analysis in barley. PLoS One. 2010;5(11):e14079. DOI. 10.1371/journal.pone.0014079.

44. Luo M.C., Thomas C., You F.M., Hsiao J., Ouyang S., Buell C.R., Malandro M., McGuire P.E., Anderson O.D., Dvorak J. High-throughput fingerprinting of bacterial artificial chromosomes using the SNaPshot labeling kit and sizing of restriction fragments by capillary electrophoresis. Genomics. 2003;82(3):378-389. DOI 10.1016/S0888-7543(03)00128-9.

45. Madishetty K., Condamine P., Svensson J.T., Rodriguez E., Close T.J. An improved method to identify BAC clones using pooled overgos. Nucleic Acids Res. 2007;35(1):1-5. DOI 10.1093/nar/gkl920.

46. Mascher M., Gundlach H., Himmelbach A., Beier S., Twardziok S.O., Wicker T., Radchuk V., …, Hansson M., Zhang G., Braumann I., Spannagl M., Li C., Waugh R., Stein N. A chromosome conformation capture ordered sequence of the barley genome. Nature. 2017; 544(7651):427-433. DOI 10.1038/nature22043.

47. Mascher M., Muehlbauer G.J., Rokhsar D.S., Chapman J., Schmutz J., Barry K., Muñoz Amatriaín M., Close T.J., Wise R.P., Schulman A.H., Himmelbach A., Mayer K.F.X., Scholz U., Poland J.A., Stein1 N., Waugh R. Anchoring and ordering NGS contig assemblies by population sequencing (POPSEQ). Plant J. 2013;76(4): 718-727. DOI 10.1111/tpj.12319.

48. Olson M., Hood L., Cantor C., Botstein D. A common language for physical mapping of the human genome. Science. 1989;245(4925): 1434-1435. DOI 10.1126/science.2781285.

49. Pauli D., Muehlbauer G.J., Smith K.P., Cooper B., Hole D., Obert D.E., Ullrich S.E., Blake T.K. Association mapping of agronomic QTLs in US spring barley breeding germplasm. Plant Genome. 2014;7(3): 1-15. DOI 10.3835/plantgenome2013.11.0037.

50. Prieto P., Santos A.P., Moore G., Shaw P. Chromosomes associate premeiotically and in xylem vessel cells via their telomeres and centromeres in diploid rice (Oryza sativa). Chromosoma. 2004;112(6): 300-307. DOI 10.1007/s00412-004-0274-8.

51. Rasheed A., Hao Y., Xia X., Khan A., Xu Y., Varshney R.K., He Z. Crop breeding chips and genotyping platforms: progress, challenges, and perspectives. Mol. Plant. 2017;10(8):1047-1064. DOI 10.1016/j.molp.2017.06.008.

52. Rostoks N., Mudie S., Cardle L., Russell J., Ramsay L., Booth A., Svensson J.T., Wanamaker S.I., Walia H., Rodriguez E.M., Hedley P.E., Liu H., Morris J., Close T.J., Marshall D.F., Waugh R. Genome-wide SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress. Mol. Genet. Genomics. 2005;274(5):515-527. DOI 10.1007/s00438-005-0046-z.

53. Schulte D., Close T.J., Graner A., Langridge P., Matsumoto T., Muehlbauer G., Sato K., Schulman A.H., Waugh R., Wise R.P., Stein N. Update on the international barley sequencing consortium – at the threshold of efficient access to the barley genome. Plant Physiol. 2009;149(1):142-147. DOI 10.1104/pp.108.128967.

54. Semagn K., Babu R., Hearne S., Olsen M. Single nucleotide polymorphism genotyping using kompetitive allele specific PCR (KASP): overview of the technology and its application in crop improvement. Mol. Breed. 2014;33(1):1-14.

55. Shavrukov Y.N. CAPS markers in plant biology. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2015;19(2):205-213. DOI 10.18699/VJ15.026.

56. Tautz D., Renz M. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res. 1984;12(10):41274138. DOI 10.1093/nar/12.10.4127.

57. Wang D.G., Fan J.B., Siao C.J., Berno A., Young P., Sapolsky R., Ghandour G., Perkins N., Winchester E., Spencer J., Kruglyak L., Stein L., Hsie L., Topaloglou T., Hubbell E., Robinson E., Mittmann M., Morris M.S., Shen N., Kilburn D., Rioux J., Nusbaum C., Rozen S., Hudson T.J., Lipshutz R., Chee M., Lander E.S. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science. 1998;280(5366):1077-1082. DOI 10.1126/science.280.5366.1077.


Просмотров: 74


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-0462 (Print)
ISSN 2500-3259 (Online)