Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Lodging in wheat: genetic and environmental factors and ways of overcoming

https://doi.org/10.18699/VJ20.628

Abstract

Lodging is one of the main factors in reducing the yield and grain quality of winter and spring wheat varieties. The resistance of wheat cultivars to lodging largely depends on environmental factors, biological and morphological features of the stem and root systems. Selection of the varieties for resistance to lodging is relevant in many countries of the world and has a number of achievements. Plant height is one of the most important morphological characters associated with lodging resistance. Breeding of the varieties carrying the dwarfing genes (Rht) is the main direction to reduce the risk of lodging. The Rht-B1b, Rht-D1b, Rht8 and Rht11 genes are widely used throughout the world due to their significant influence on agronomically valuable traits, including lodging. It turned out to be important to study the anatomical and morphological features and chemical composition of stem tissues, which complement the assessment of resistance to lodging and allow the varietal material to be more fully characterized. The thickness of stem internodes and their anatomical structure play an important role in the stem strength. The diameter of the stem, its thickness and weight, a large number of vascular bundles and a wide ring of mechanical tissues correlate with resistance to lodging. The content of lignin, silicon and cellulose are important structural components and provide the stem strength of wheat plants. Molecular genetic analysis and mapping of genes and quantitative trait loci are of great importance in identifying the genetic basis of the relationship between the anatomical and morphophysiological characters of the stem and root system and lodging. Genetic factors reflecting correlations between the lodging and the thickness of the stem wall, the number of vascular bundles and other characters were mapped to chromosomes 1A, 1B, 2A, 2D, 3A, 4B, 4D, 5A, 5D, 6D and 7D. It has been found that loci with high phenotypic effects on lodging tolerance are colocalized with loci responsible for plant height, stem diameter and stem strength. To increase resistance to lodging, it is necessary to develop a set of agrotechnical methods that reduce the influence of soil and climatic factors and create wheat varieties tolerant to lodging.

About the Authors

E. V. Ageeva
Siberian Research Institute of Plant Production and Breeding – Branch of the Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
Russian Federation
Novosibirsk


I. N. Leonova
Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
Russian Federation
Novosibirsk


I. E. Likhenko
Siberian Research Institute of Plant Production and Breeding – Branch of the Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
Russian Federation
Novosibirsk


References

1. Bilova T.E., Ryabova D.N., Anisimova I.N. Molecular basis of the dwarfism character in cultivated plants. I. Growth distortions due to mutations of gibberellin metabolism and signaling. Selskokhozyaystvennaya Biologiya = Agricultural Biology. 2016;51(1):3-16. DOI 10.15389/agrobiology.2016.1.3eng.

2. Divashuk M.G., Vasilyev A.V., Bespalova L.A., Karlov G.I. Identity of the Rht-11 and Rht-B1e reduced plant height genes. Russ. J. Genet. 2012;48(7):761-763. DOI 10.1134/S1022795412050055.

3. Dorofeev V.F., Yakubciner M.M., Rudenko M.I., Migushova E.F., Udachin R.A., Merezhko A.F., Semenova L.V., Novikova M.V., Gradchaninova O.D., Shitova I.P. Wheats of the World. Leningrad: Agropromizdat Publ., 1976. (in Russian)

4. Emelyanova N.A., Reznichenko N.M. Wheat and Wheat Improvement. Moscow: Kolos Publ., 1970. (in Russian)

5. Zakharov V.G., Syukov V.V., Yakovleva O.D. Correlation of morphoanatomical traits with lodging resistance in spring wheat in the middle Volga region. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2014;18(3):506-510. (in Russian)

6. Ivanov B.I., Dokhunaev V.N. Biologic Features of Spring Wheat in Yakutia. Novosibirsk: Nauka Publ., 1979. (in Russian)

7. Ivanchenko T.V., Rezanova G.I. Prospects of silicon auxin biostimulation of grain crops. Nauchno­Agronomicheskii Zhurnal = Scientific Agronomy Journal. 2016;1(98):29-32. (in Russian)

8. Ionova E.V. Lodging resistance of winter wheat. Agrarnii Vestnik Urala = Agrarian Bulletin of the Urals. 2009;8(62):56-57. (in Russian)

9. Kozlov A.V., Uromova I.P., Frolov E.A., Mozoleva K.Yu. The physiological role of silicon in the development of crops and their protection against plant pathogens. Mezhdunarodnyy Studencheskiy Nauchnyy Vestnik = International Student Scientific Herald. 2015; 1:39. (in Russian)

10. Korshunova A.D., Divashuk M.G., Daebl I.A., Karlov G.I., Soloviev A.A. Validation of DNA markers for semi-dwarf genes in intriticale (Triticosecale Wittm.). Izvestiya Timiryazevskoy Selskokhozyaystvennoy Akademii = Izvestiya of Timiryazev Agricultural Academy. 2014;3:21-31. (in Russian)

11. Lazarevich S.V. Evolution of the Anatomical Structure of the Wheat Stem. Minsk: Hata Publ., 1999. (in Russian)

12. Lazarevich S.V., Mykhlyk A.I. Variety of oat cultivars for the development of mechanical tissues of the stem. Vestnik BGSHA = Bulletin of the Belarussian State Agricultural Academy. 2014;3:73-77. (in Russian)

13. Lelley J. Wheat Breeding: Theory and Practice. Budapest: Akad. Kiado, 1976. (Russ. ed.: Selektsiya Pshenitsy. Teoriya i Praktika. Moscow: Kolos Publ., 1980.

14. Lubnin A.N. Spring Wheat Breeding in Siberia. Novosibirsk, 2006. (in Russian)

15. Nosatovsky A.I. Wheat. Biology. Moscow: Kolos Publ., 1965;281-291. (in Russian)

16. Terentyev V.M. Physiology of plant resistance to lodging and methods for its assessment. In: Plant Physiology in Aid of Breeding. Moscow: Nauka Publ., 1974;108-123. (in Russian)

17. Shapoval O.A., VakulenkoV.V., Mozharova I.P. Retardants. Zashchita i Karantin Rasteniy = Plant Protection and Quarantine. 2010;8:4-7. (in Russian)

18. Ageeva E.V., Leonova I.N., Salina E.A., Likhenko I.E. Anatomo-morphological stem features of spring bread wheat varieties. In: Proc. 5th Int. Conf. PlantGen2019. Novosibirsk, 2019;26. DOI 10.18699/PlantGen2019-008.

19. Berry P.M. Lodging resistance in cereals. In: Encyclopedia of Sustainability Science and Technology. Springer, NY, 2012. DOI 10.1007/978-1-4419-0851-3_228.

20. Berry P.M., Berry S.T. Understanding the genetic control of lodgingassociated plant characters in winter wheat (Triticum aestivum L.). Euphytica. 2015;205:671-689. DOI 10.1007/s10681-015-1387-2.

21. Berry P.M., Sterling M., Spink J.H., Baker C.J., Sylvester-Bradley R., Mooney S.J., Tams A.R., Ennos A.R. Understanding and reducing lodging in cereals. Adv. Agron. 2004;84:217-271. DOI 10.1016/S0065-2113(04)84005-7.

22. Borojevic K., Borojevic K. The transfer and history of “reduced height genes” (Rht) in wheat from Japan to Europe. Heredity. 2005;96(4): 455-459. DOI 10.1093/jhered/esi060.

23. Crook M.J., Ennos A.R. The mechanics of root lodging in winter wheat (Triticum aestivum L.). J. Exp. Bot. 1993;44:1219-1224.

24. Dahiya S., Kumar S., Harender, Chaudhary C. Lodging: significance and preventive measures for increasing crop production. Int. J. Chem. Studies. 2018;6(1):700-705.

25. Daoura B.G., Chen L., Du Y., Hu Y.-G. Genetic effects of dwarfing gene Rht-5 on agronomic traits in common wheat (Triticum aestivum L.) and QTL analysis on its linked traits. Field Crops Res. 2014;156: 22-29. DOI 10.1016/j.fcr.2013.10.007.

26. Evans L.T. Crop evolution, adaptation and yield. Photosynthetica. 1998;34:56-60. DOI 10.1023/A:1006889901899.

27. Fischer R.A., Stapper M. Lodging effects on high yielding crops of irrigated semi-dwarf wheat. Field Crops Res. 1987;17:245-248.

28. Foulkes M.J., Slafer G.A., Davies W.J., Berry P.M., Sylvester-Bradle R., Martre P., Calderini D.F., Griffiths S., Reynolds M.P. Raising yield potential of wheat. III. Optimizing partitioning to grain while maintaining lodging resistance. J. Exp. Bot. 2011;62(2):469-486. DOI 10.1093/jxb/erq300.

29. Hai L., Guo H., Xiao S., Jiang G., Zhang X., Yan C., Xin Z., Jia J. Quantitative trait loci (QTL) of stem strength and related traits in a doubled-haploid population of wheat (Triticum aestivum L.). Euphytica. 2005;141:1-9. DOI 10.1007/s10681-005-4713-2.

30. Kaur S., Zhang X., Mohan A., Dong H., Vikram P., Singh S., Zhang Z., Gill K.S., Dhugga K.S., Singh J. Genome-Wide Association Study reveals novel genes associated with culm cellulose content in bread wheat (Triticum aestivum L.). Front. Plant Sci. 2017;8:1913. DOI 10.3389/fpls.2017.01913.

31. Kelbert A.J., Spaner D., Briggs K.G., King J.R. The association of culm anatomy with lodging susceptibility in modern spring wheat genotypes. Euphytica. 2004;136:211-221. DOI 10.1023/B:EUPH.0000030670.36730.a4.

32. Keller M., Karutz C., Schmid J.E., Stamp P., Winzler M., Keller B., Messner M.M. Quantitative trait loci for lodging resistance in a segregating wheat × spelt population. Theor. Appl. Genet. 1999;98: 1171-1182.

33. Khobra R., Sareen S., Meena B.K., Kumar A., Tiwari V.K., Singh G.P. Exploring the traits for lodging tolerance in wheat genotypes. Physiol. Mol. Biol. Plants. 2019;25(3):589-600. DOI 10.1007/s12298-018-0629-x.

34. Knopf C., Becker H., Ebmeyer E., Korzun V. Occurrence of three dwarfing Rht genes in German winter wheat varieties. Cereal Res. Commun. 2008;36(4):553-560. DOI 10.1556/CRC.36.2008.4.4.

35. Kong E., Liu D., Guo X., Yang W., Sun J., Li X., Zhan K., Cui D., Lin J., Zhang A. Anatomical and chemical characteristics associated with lodging resistance in wheat. Crop J. 2013;1:43-49. DOI 10.1016/j.cj.2013.07.012.

36. Li C., Bai G., Carver B.F., Chao S., Wang Z. Mapping quantitative trait loci for plant adaptation and morphology traits in wheat using single nucleotide polymorphisms. Euphytica. 2015;208:299-312. DOI 10.1007/s10681-015-1594-x.

37. Mavi G.S., Nanda G.S., Sohu V.S. Screening bread wheat genotypes for lodging resistance. Crop Improv. (India). 2004;31(1):113-118.

38. McIntosh R.A., Dubcovsky J., Rogers W.J., Morris C., Appels R., Xia X.C. Catalogue of Gene Symbols for Wheat: 2013, Supplement 2014–2017. Available at: www.shigen.nig.ac.jp/wheat/komugi/genes/

39. Mulder E.G. Effect of mineral nutrition on lodging of cereals. Plant Soil. 1954;5(3):246-306.

40. Niu L., Feng S., Ding W., Li G. Influence of speed and rainfall on largescale wheat lodging from 2007 to 2014 in China. PLoS One. 2016; 11(7):e0157677. DOI 10.1371/journal.pone.0157677.

41. Packa D., Wiwart M., Suchowilska E., Dienkowska T. Morpho-anatomical traits of two lowest internodes related to lodging resistance in selected genotypes of Triticum. Int. Agrophys. 2015;29:475-483. DOI 10.1515/intag-2015-0053.

42. Pearce S., Saville R., Vaughan S.P., Chandler P.M., Wilhelm E.P., Sparks C.A., Al-Ka N., Korolev A., Boulton M.I., Phillips A.L. Molecular characterization of Rht-1 dwarfing genes in hexaploid wheat. Plant Physiol. 2011;157:1820-1831. DOI 10.1104/pp.111.183657.

43. Peng D., Chen X., Yin Y., Lu K., Yang W., Tang Y., Wang Z. Lodging resistance of winter wheat (Triticum aestivum L.) lignin accumulation and its related enzymes activities due to the application of paclobutrazol or gibberellin acid. Field Crops Res. 2014;157:1-7. DOI 10.1016/j.fcr.2013.11.015.

44. Peng J., Richards D.E., Hartley N.M., Murphy G.P., Devos K.M., Flintham J.E., Beales J., Fish L.J., Worland A.J., Pelica F., Sudhakar D., Christou P., Snape J.W., Gale M.D., Harberd N.P. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature. 1999;400(6741):256-261.

45. Pinthus M.J. Spread of the root system as indicator for evaluating lodging resistance of wheat. Crop Sci. 1967;7:107-110.

46. Shah A.N., Tanveer M., Rehman A.U., Anjum S.A., Iqbal J., Ahmad R. Lodging stress in cereal – effects and management: an overview. Environ. Sci. Pollut. Res. 2017;24:5222-5237. DOI 10.1007/s1135-6016-8237-1.

47. Shah L., Yahya M., Shah S., Nadeem M., Ali A., Ali A., Wang J., Riaz M.W., Rehman S., Wu W., Khan R.M., Abbas A., Riaz A., Anis G.B., Si H., Jiang H., Ma C. Improving lodging resistance: using wheat and rice as classical examples. Int. J. Mol. Sci. 2019;20:4211. DOI 10.3390/ijms20174211.

48. Singh D., Wang X., Kumar U., Gao L., Noor M., Imtiaz M., Singh R.P., Poland J. High-throughput phenotyping enabled genetic dissection of crop lodging in wheat. Front. Plant Sci. 2019;10:394. DOI 10.3389/fpls.2019.00394.

49. Souza L.T., Espíndula M.C., Rocha V.S., Fernandes D.C., Souza M.A. Growth retardants in wheat and its effect in physiological quality of seeds. Ciência Rural. 2010;40(6):1431-1434. DOI 10.1590/S0103-84782010000600031.

50. Thomas S.G. Novel Rht-1 dwarfing genes: tools for wheat breeding and dissecting the function of DELLA proteins. J. Exp. Bot. 2017;68(3): 354-358. DOI 10.1093/jxb/erw509.

51. Vera-Sirera F., Gomez M.D., Perez-Amador M.A. DELLA proteins, a group of GRAS transcription regulators that mediate gibberellin signaling. In: Gonzalez D.H. (Ed.). Plant Transcription Factors: Evolutionary, Structural and Functional Aspects. Acad. Press; Elsevier, 2016;313-328. DOI 10.1016/B978-0-12-800854-6.00020-8.

52. Verma V., Worland A., Savers E., Fish L., Caligari P., Snape J. Identification and characterization of quantitative trait loci related to lodging resistance and associated traits in bread wheat. Plant Breed. 2005;124:234-241. DOI 10.1111/j.1439-0523.2005.01070.x.

53. Walsh O.S., Shafian S., McClintick-Chess J.R., Belmont K.M., Blanscet S.M. Potential of silicon amendment for improved wheat production. Plants. 2018;7(2):26. DOI 10.3390/plants7020026.

54. Wang Y., Chen L., Du Y., Yang Z., Condon A.G., Hu Y.-G. Genetic effect of dwarfing gene Rht13 compared with Rht-D1b on plant height and some agronomic traits in common wheat (Triticum aestivum L.). Field Crops Res. 2014;162:39-47. DOI 10.1016/j.fcr.2014.03.014.

55. Weibel R.O., Pendleton J.W. Effect of artificial lodging on winter wheat grain yield and quality. Agron. J. 1964;56:487-488.

56. Wurschum T., Langer S.M., Longin C.F.H., Tucker M.R., Leiser W.L. A modern Green Revolution gene for reduced height in wheat. Plant J. 2017;92:892-903. DOI 10.1111/tpj.13726.

57. Xiao Y., Liu J., Li H., Cao X., Xia X., He Z. Lodging resistance and yield potential of winter wheat: effect of planting density and genotype. Front. Agr. Sci. Eng. 2015;2(2):168-178. DOI 10.15302/J-FASE-2015061.

58. Yamaguchi S. Gibberellin metabolism and its regulation. Annu. Rev. Plant Biol. 2008;59:225-251. DOI 10.1146/annurev.arplant.59.032607.092804.

59. Zhang M., Wang H., Yi Y., Ding J., Zhu M., Li C. Effect of nitrogen levels and nitrogen ratios on lodging resistance and yield potential of winter wheat (Triticum aestivum L.). PLoS One. 2017;12(11): e0187543. DOI 10.1371/journal.pone.0187543.

60. Zheng M., Chen J., Shi Y., Li Y., Yin Y., Yang D., Luo Y., Pang D., Xu X., Li W., Ni J., Wang Y., Wang Z., Li Y. Manipulation of lignin metabolism by plant densities and its relationship with lodging resistance in wheat. Sci. Rep. 2017;7:41805. DOI 10.1038/srep41805.

61. Zuber U., Winzeler H., Messmer M.M., Keller M., Keller B., Schmid J.E., Stamp P. Morphological traits associated with lodging resistance of spring wheat. J. Agron. Crop Sci. 1999;182:17-24.


Review

Views: 1744


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)