Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Причины глобальных вымираний в истории жизни: факты и гипотезы

https://doi.org/10.18699/VJ20.633

Полный текст:

Аннотация

Палеонтологи характеризуют глобальные вымирания на Земле как потерю ~3/4 существующего биоразнообразия на большей части земного шара за относительно короткий геологический промежуток времени. В палеонтологической летописи Земли, описывающей период фанерозоя (~500 млн лет), документировано как минимум пять таких глобальных вымираний: ~65, 200, 260, 380 и 440 млн лет назад. Существуют данные о возможности глобальных вымираний в более отдаленные периоды жизни на Земле – в позднем кембрии (~500 млн лет назад) и эдиакарии (более 540 млн лет назад). Общего мнения о причинах их возникновения до сих пор не сформировано. В настоящем обзоре систематизированы документированные факты глобальных вымираний сложных форм жизни на Земле с момента их возникновения в эдиакарии и до современного периода. Рассматриваются возможные причины их возникновения с точки зрения воздействия абиогенных факторов, планетарных или астрономических, и последствий их действия. Анализируются данные «за» и «против» гипотезы периодичности массовых вымираний биоразнообразия морской биоты в фанерозойский период. Обсуждаются факты, позволяющие высказывать гипотезы о наличии дополнительных механизмов возникновения кризисов в эволюции сложных форм жизни на Земле, связанных с различными внутренними биотическими факторами. Развивая тему внутренних причин периодичности и прерывистости эволюционного процесса, мы высказываем собственную, оригинальную гипотезу, согласно которой глобальные вымирания являются отражением сложной динамики изменения уровня биоразнообразия на Земле и следствием феномена бистабильности. Этот феномен возникает только в экосистеме, бóльшая часть организмов которой размножается половым путем. Данная гипотеза говорит о том, что, если бы даже не было никаких глобальных катастроф абиотического характера, кризисы в развитии биоты возникали бы все равно. Однако гипотеза не исключает, что в определенные моменты времени биота Земли подвергалась мощным внешним воздействиям, оказавшим существенное влияние на ее дальнейшее развитие, что нашло отражение в конкретных палеонтологических данных.

Об авторах

Т. М. Хлебодарова
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия
Новосибирск


В. А. Лихошвай
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия
Новосибирск


Список литературы

1. Alroy J. Colloquium paper: dynamics of origination and extinction in the marine fossil record. Proc. Natl. Acad. Sci. USA. 2008; 105(Suppl. 1):11536-11542. DOI 10.1073/pnas.0802597105.

2. Alvarez L.W., Alvarez W., Asaro F., Michel H.V. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science. 1980;208(4448): 1095-1108.

3. Alvarez L.W., Alvarez W., Asaro F., Michel H.V. Asteroid extinction hypothesis. Science. 1981;211(4483):654-656.

4. Archibald J.D., Clemens W.A., Padian K., Archibald J.D., Clemens W.A., Padian K., Rowe T., Macleod N., Barrett P.M., Gale A., Holroyd P., Sues H.D., Arens N.C., Horner J.R., Wilson G.P., Goodwin M.B., Brochu C.A., Lofgren D.L., Hurlbert S.H., Hartman J.H., Eberth D.A., Wignall P.B., Currie P.J., Weil A., Prasad G.V., Dingus L., Courtillot V., Milner A., Milner A., Bajpai S., Ward D.J., Sahni A. Cretaceous extinctions: multiple causes. Science. 2010; 328(5981):973.

5. Bacon K.L., Belcher C.M., Haworth M., McElwain J.C. Increased atmospheric SO 2 detected from changes in leaf physiognomy across the Triassic-Jurassic boundary interval of East Greenland. PLoS One. 2013;8(4):e60614. DOI 10.1371/journal.pone.0060614.

6. Bak P., Paczuski M. Complexity, contingency, and criticality. Proc. Natl. Acad. Sci. USA. 1995;92(15):6689-6696.

7. Baker R.G., Flood P.G. The Sun-Earth connect 3: lessons from the periodicities of deep time influencing sea-level change and marine extinctions in the geological record. SpringerPlus. 2015;4:285. DOI 10.1186/s40064-015-0942-6.

8. Bambach R.K. Species richness in marine benthic habitats through the Phanerozoic. Paleobiology. 1977;3(2):152-167.

9. Bambach R.K., Knoll A.J., Wang S.C. Origination, extinction, and mass depletions of marine diversity. Paleobiology. 2004;30:522-542. DOI 10.1666/0094-8373(2004)030<0522:OEAMDO>2.0.CO;2.

10. Barnosky A.D., Matzke N., Tomiya S., Wogan G.O., Swartz B., Quental T.B., Marshall C., McGuire J.L., Lindsey E.L., Maguire K.C., Mersey B., Ferrer E.A. Has the Earth’s sixth mass extinction already arrived? Nature. 2011;471(7336):51-57. DOI 10.1038/nature09678.

11. Bartlett R., Elrick M., Wheeley J.R., Polyak V., Desrochers A., Asmerom Y. Abrupt global-ocean anoxia during the Late Ordovicianearly Silurian detected using uranium isotopes of marine carbonates. Proc. Natl. Acad. Sci. USA. 2018;115(23):5896-5901. DOI 10.1073/pnas.1802438115.

12. Beerling D. CO 2 and the end-Triassic mass extinction. Nature. 2002; 415(6870):386-387.

13. Benton M.J. Diversification and extinction in the history of life. Science. 1995;268(5207):52-58.

14. Blackburn T.J., Olsen P.E., Bowring S.A., McLean N.M., Kent D.V., Puffer J., McHone G., Rasbury E.T., Et-Touhami M. Zircon U-Pb geochronology links the end-Triassic extinction with the Central Atlantic Magmatic Province. Science. 2013;340(6135):941-945. DOI 10.1126/science.1234204.

15. Bond D.P.G., Wignall P.B. The role of sea-level change and marine anoxia in the Frasnian-Famennian (Late Devonian) mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2008;263(3-4):107-118.

16. Brennecka G.A., Herrmann A.D., Algeo T.J., Anbar A.D. Rapid expansion of oceanic anoxia immediately before the end-Permian mass extinction. Proc. Natl. Acad. Sci. USA. 2011;108(43):17631-17634. DOI 10.1073/pnas.1106039108.

17. Buatois L.A., Narbonne G.M., Mángano M.G., Carmona N.B., Myrow P. Ediacaran matground ecology persisted into the earliest Cambrian. Nat. Commun. 2014;5:3544. DOI 10.1038/ncomms4544.

18. Burgess S.D., Muirhead J.D., Bowring S.A. Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction. Nat. Commun. 2017;8:164. DOI 10.1038/s41467-017-00083-9.

19. Bush A.M., Hunt G., Bambach R.K. Sex and the shifting biodiversity dynamics of marine animals in deep time. Proc. Natl. Acad. Sci. USA. 2016;113(49):14073-14078.

20. Ceballos G., Ehrlich P.R., Barnosky A.D., García A., Pringle R.M., Palmer T.M. Accelerated modern human-induced species losses: Entering the sixth mass extinction. Sci. Adv. 2015;1(5):e1400253. DOI 10.1126/sciadv.1400253.

21. Cermeño P., Benton M.J., Paz Ó., Vérard C. Trophic and tectonic limits to the global increase of marine invertebrate diversity. Sci. Rep. 2017;7:15969. DOI 10.1038/s41598-017-16257-w.

22. Chen D.Z., Qing H.R., Li R.W. The Late Devonian Frasnian-Famennian (F/F) biotic crisis: Insights from delta C-13(carb), delta C-13(org) and Sr-87/Sr-86 isotopic systematics. Earth Planet. Sci. Lett. 2005; 235(1-2):151-166.

23. Chen D.Z., Tucker M.E., Shen Y.N., Yans J., Preat A. Carbon isotope excursions and sea-level change: implications for the FrasnianFamennian biotic crisis. J. Geol. Soc. 2002;59(6):623-626. DOI 10.1144/0016-764902-027.

24. Claeys P., Casier J.G., Margolis S.V. Microtektites and mass extinctions: evidence for a late devonian asteroid impact. Science. 1992; 257(5073):1102-1104.

25. Clarkson M.O., Kasemann S.A., Wood R.A., Lenton T.M., Daines S.J., Richoz S., Ohnemueller F., Meixner A., Poulton S.W., Tipper E.T. Ocean acidification and the Permo-Triassic mass extinction. Science. 2015;348(6231):229-232. DOI 10.1126/science.aaa0193.

26. Courtillot V., Fluteau F. Cretaceous extinctions: the volcanic hypothesis. Science. 2010;328(5981):973-974.

27. Darroch S.A., Sperling E.A., Boag T.H., Racicot R.A., Mason S.J., Morgan A.S., Tweedt S., Myrow P., Johnston D.T., Erwin D.H., Laflamme M. Biotic replacement and mass extinction of the Ediacara biota. Proc. Biol. Sci. 2015;282(1814):pii20151003. DOI 10.1098/rspb.2015.1003.

28. Darwin C. The Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. London, 1872. (Russ. ed.: Darvin Ch. Proiskhozhdenie Vidov Putem Estestvennogo Otbora, ili Sokhranenie Blagopriyatnykh Ras v Bor’be za Zhizn’. Saint-Petersburg: Nauka Publ., 1991).

29. Decroly O., Goldbeter A. Birhythmicity, chaos, and other patterns of temporal self-organization in a multiply regulated biochemical system. Proc. Natl. Acad. Sci. USA. 1982;79(22):6917-6921.

30. Dieckmann U., Law R. The dynamical theory of coevolution: a derivation from stochastic ecological processes. J. Math. Biol. 1996; 34(5-6):579-612.

31. Eldredge N., Gould S.J. On punctuated equilibria. Science. 1997; 276(5311):338-341.

32. Erlykin A.D., Harper D.A.T., Sloan T., Wolfendale A.W. Mass extinctions over the last 500 myr: an astronomical cause? Palaeontology. 2017;60(2):159-167. DOI 10.1111/pala.12283.

33. Erlykin A.D., Harper D.A.T., Sloan T., Wolfendale A.W. Periodicity in extinction rates. Palaeontology. 2018;61:149-158. DOI 10.1111/pala.12334.

34. Finnegan S., Bergmann K., Eiler J.M., Jones D.S., Fike D.A., Eisenman I., Hughes N.C., Tripati A.K., Fischer W.W. The magnitude and duration of Late Ordovician-Early Silurian glaciation. Science. 2011;331(6019):903-906.

35. Finnegan S., Heim N.A., Peters S.E., Fischer W.W. Climate change and the selective signature of the Late Ordovician mass extinction. Proc. Natl. Acad. Sci. USA. 2012;109(18):6829-6834.

36. Gharaie M.H.M., Matsumoto R., Kakuwa Y., Milroy P.G. Late Devonian facies variety in Iran: volcanism as a possible trigger of the environmental perturbation near the Frasnian-Famennian boundary. Geol. Quart. 2004;48(4):323-332.

37. Gharaie M.H.M., Matsumoto R., Racki G., Kakuwa Y. Chemostratigraphy of Frasnian-Famennian transition: Possibility of methane hydrate dissociation leading to mass extinction. Large ecosystem perturbations: causes and consequences. Geological Society of America Special Paper. 2007;424:109-125. DOI 10.1130/2007.2424(07).

38. Ghienne J.F., Desrochers A., Vandenbroucke T.R., Achab A., Asselin E., Dabard M.P., Farley C., Loi A., Paris F., Wickson S., Veizer J. A Cenozoic-style scenario for the end-Ordovician glaciation. Nat. Commun. 2014;5:4485. DOI 10.1038/ncomms5485.

39. Gill B.C., Lyons T.W., Young S.A., Kump L.R., Knoll A.H., Saltzman M.R. Geochemical evidence for widespread euxinia in the later Cambrian ocean. Nature. 2011;469(7328):80-83. DOI 10.1038/nature09700.

40. Gingerich P.D. Paleontology and phylogeny: patterns of evolution of the species level in early tertiary mammals. Am. J. Sci. 1976;276:1-28.

41. Goldbeter A., Gonze D., Houart G., Leloup J.C., Halloy J., Dupont G. From simple to complex oscillatory behavior in metabolic and genetic control networks. Chaos. 2001;11(1):247-260.

42. Gong Q., Wang X., Zhao L., Grasby S.E., Chen Z.Q., Zhang L., Li Y., Cao L., Li Z. Mercury spikes suggest volcanic driver of the Ordovician-Silurian mass extinction. Sci. Rep. 2017;13(7(1)):5304. DOI 10.1038/s41598-017-05524-5.

43. Gould S.J., Eldredge N. Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiology. 1977;3:115-151.

44. Gould S.J., Eldredge N. Punctuated equilibrium comes of age. Nature. 1993;366(6452):223-227.

45. Guex J., Pilet S., Müntener O., Bartolini A., Spangenberg J., Schoene B., Sell B., Schaltegger U. Thermal erosion of cratonic lithosphere as a potential trigger for mass-extinction. Sci. Rep. 2016;6:23168. DOI 10.1038/srep23168.

46. Harish O., Hansel D. Asynchronous rate chaos in spiking neuronal circuits. PLoS Comput. Biol. 2015;11(7):e1004266. DOI 10.1371/journal.pcbi.1004266.

47. Heimdal T.H., Svensen H.H., Ramezani J., Iyer K., Pereira E., Rodrigues R., Jones M.T., Callegaro S. Large-scale sill emplacement in Brazil as a trigger for the end-Triassic crisis. Sci. Rep. 2018;8(1):141. DOI 10.1038/s41598-017-18629-8.

48. Hesse J., Gross T. Self-organized criticality as a fundamental property of neural systems. Front. Syst. Neurosci. 2014;8:166. DOI 10.3389/fnsys.2014.00166.

49. Huang C., Joachimski M.M., Gong Y.M. Did climate changes trigger the Late Devonian Kellwasser Crisis? Evidence from a high-resolution conodont delta O-18(PO4) record from South China. Earth Planet. Sci. Lett. 2018;495:174-184. DOI 10.1016/j.epsl.2018.05.016.

50. Huey R.B., Ward P.D. Hypoxia, global warming, and terrestrial late Permian extinctions. Science. 2005;308(5720):398-401.

51. Hunt G. The relative importance of directional change, random walks, and stasis in the evolution of fossil lineages. Proc. Natl. Acad. Sci. USA. 2007;104(47):18404-18408.

52. Huntley J.W., Kowalewski M. Strong coupling of predation intensity and diversity in the Phanerozoic fossil record. Proc. Natl. Acad. Sci. USA. 2007;104(38):15006-15010.

53. Jackson J.B., Cheetham A.H. Tempo and mode of speciation in the sea. Trends Ecol. Evol. 1999;14(2):72-77.

54. Joachimski M.M., Buggisch W. Anoxic events in the late Frasnian causes of the Frasnian-Famennian faunal crisis. Geology. 1993; 21(8):675-678.

55. Kaiho K., Oshima N. Site of asteroid impact changed the history of life on Earth: the low probability of mass extinction. Sci. Rep. 2017; 7(1):14855. DOI 10.1038/s41598-017-14199-x.

56. Kaiho K., Oshima N., Adachi K., Adachi Y., Mizukami T., Fujibayashi M., Saito R. Global climate change driven by soot at the K-Pg boundary as the cause of the mass extinction. Sci. Rep. 2016;6: 28427. DOI 10.1038/srep28427.

57. Kaiho K., Yatsu S., Oba M., Gorjan P., Gorjan P., Casier J.G., Ikeda M. A forest fire and soil erosion event during the Late Devonian mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2013;392: 272-280. DOI 10.1016/j.palaeo.2013.09.008.

58. Keller G., Adatte T., Pardo A., Bajpai S., Khosla A., Samant B. Cretaceous extinctions: evidence overlooked. Science. 2010;328(5981): 974-975. DOI 10.1126/science.328.5981.974-a.

59. Khlebodarova T.M., Kogai V.V., Fadeev S.I., Likhoshvai V.A. Chaos and hyperchaos in simple gene network with negative feedback and time delays. J. Bioinform. Comput. Biol. 2017;15(2):1650042. DOI 10.1142/S0219720016500426.

60. Khlebodarova T.M., Kogai V.V., Trifonova E.A., Likhoshvai V.A. Dynamic landscape of the local translation at activated synapses. Mol. Psychiatry. 2018;23(1):107-114. DOI 10.1038/mp.2017.245.

61. Khlebodarova T.M., Likhoshvai V.A. Persister cells – a plausible outcome of neutral coevolutionary drift. Sci. Rep. 2018;8(1):14309. DOI 10.1038/s41598-018-32637-2.

62. Khlebodarova T.M., Likhoshvai V.A. Molecular mechanisms of noninherited antibiotic tolerance in bacteria and archaea. Mol. Biol. (Moscow). 2019;53(4):475-483. DOI 10.1134/S0026893319040058.

63. Knoll A.H., Bambach R.K., Canfield D.E., Grotzinger J.P. Comparative Earth history and Late Permian mass extinction. Science. 1996; 273:452-457.

64. Kogai V.V., Likhoshvai V.A., Fadeev S.I., Khlebodarova T.M. Multiple scenarios of transition to chaos in the alternative splicing model. Int. J. Bifurcat. Chaos. 2017;27(2):1730006. DOI 10.1142/S0218127417300063.

65. Lamsdell J.C., Selden P.A. From success to persistence: Identifying an evolutionary regime shift in the diverse Paleozoic aquatic arthropod group Eurypterida, driven by the Devonian biotic crisis. Evolution. 2017;71(1):95-110. DOI 10.1111/evo.13106.

66. Lau K.V., Maher K., Altiner D., Kelley B.M., Kump L.R., Lehrmann D.J., Silva-Tamayo J.C., Weaver K.L., Yu M., Payne J.L. Marine anoxia and delayed Earth system recovery after the end-Permian extinction. Proc. Natl. Acad. Sci. USA. 2016;113(9):2360-2365. DOI 10.1073/pnas.1515080113.

67. Lieberman B.S., Melott A.L. Considering the case for biodiversity cycles: re-examining the evidence for periodicity in the fossil record. PLoS One. 2007;2(8):e759.

68. Lieberman B.S., Melott A.L. Whilst this planet has gone cycling on: what role for periodic astronomical phenomena in large-scale patterns in the history of life? In: Talent J.A. (Ed.). Earth and Life, International Year of Planet Earth. Springer Science and Business Media B.V., 2012;37-50.

69. Likhoshvai V.A., Fadeev S.I., Khlebodarova T.M. Stasis and periodicity in the evolution of a global ecosystem: the minimum logistic model. Matematicheskaya Biologiya i Bioinformatika = Mathematical Biology and Bioinformatics. 2017;12(1):120-136. DOI 10.17537/2017.12.120. (in Russian)

70. Likhoshvai V.A., Khlebodarova T.M. The minimum logistic model of global ecosystem evolution. Proc. of the VI Int. Conf. “Mathematical Biology and Bioinformatics”, Puschino, 16-21 October. 2016; 6:116-117. (in Russian)

71. Likhoshvai V.A., Khlebodarova T.M. Phenotypic variability of bacterial cell cycle: mathematical model. Mathematical Biology and Bioinformatics. 2017;12(Suppl.):t23-t44. DOI 10.17537/2017.12.t23.

72. Likhoshvai V.A., Kogai V.V., Fadeev S.I., Khlebodarova T.M. Alternative splicing can lead to chaos. J. Bioinform. Comput. Biol. 2015; 13(1):1540003. DOI 10.1142/S021972001540003X.

73. Likhoshvai V.A., Kogai V.V., Fadeev S.I., Khlebodarova T.M. Chaos and hyperchaos in a model of ribosome autocatalytic synthesis. Sci. Rep. 2016;6:38870. DOI 10.1038/srep38870.

74. Likhoshvai V.A., Matushkin Yu.G. Latent phenotype as adaptation reserve: a simplest model of cell evolution. Proc. of the II Int. Conf. “Bioinformatics of Genome Regulation and Structure”. Novosibirsk. 2000;1:195-198.

75. Likhoshvai V.A., Matushkin Yu.G. Sporadic emergence of latent phenotype during evolution. In: Kolchanov N., Hofestaedt R. (Eds.). Bioinformatics of Genome Regulation and Structure. Boston; Dordrecht; London: Kluwer Academic Publishers, 2004;231-243.

76. Lindskog A., Costa M.M., Rasmussen C.M., Connelly J.N., Eriksson M.E. Refined Ordovician timescale reveals no link between asteroid breakup and biodiversification. Nat. Commun. 2017;8:14066. DOI 10.1038/ncomms14066.

77. Lindström S., Sanei H., van de Schootbrugge B., Pedersen G.K., Lesher C.E., Tegner C., Heunisch C., Dybkjær K., Outridge P.M. Volcanic mercury and mutagenesis in land plants during the end-Triassic mass extinction. Sci. Adv. 2019;5(10):eaaw4018. DOI 10.1126/sciadv.aaw4018.

78. Liu J.S., Qie W.K., Algeo T.J., Yao L., Huang J.H., Luo G.M. Changes in marine nitrogen fixation and denitrification rates during the endDevonian mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016;448:195-206. DOI 10.1016/j.palaeo.2015.10.022.

79. Ma X.P., Gong Y.M., Chen D.Z., Racki G., Chen X.Q., Liao W.H. The Late Devonian Frasnian-Famennian event in South China – patterns and causes of extinctions, sea level changes, and isotope variations. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016;448:224-244. DOI 10.1016/j.palaeo.2015.10.047.

80. Mackey M.C., Glass L. Oscillation and chaos in physiological control systems. Science. 1977;197:287-289.

81. Madin J.S., Alroy J., Aberhan M., Fürsich F.T., Kiessling W., Kosnik M.A., Wagner P.J. Statistical independence of escalatory ecological trends in Phanerozoic marine invertebrates. Science. 2006; 312(5775):897-900.

82. Markov A.V. A new approach to modeling the diversity dynamics of Phanerozoic marine biota. Zhurnal Obshchei Biologii = Journal of General Biology. 2001a;62(6):460-471. (in Russian)

83. Markov A.V. Dynamics of the marine faunal diversity in the Phanerozoic: a new approach. Paleontol. J. 2001b;35(1):1-9.

84. Markov A.V., Korotaev A.V. The dynamics of Phanerozoic marine animal diversity fits the hyperbolic growth model. Zhurnal Obshchei Biologii = Journal of General Biology. 2007;68(1):3-18. (in Russian)

85. Martinez de la Fuente I., Martinez L., Veguillas J., Aguirregabiria J.M. Quasiperiodicity route to chaos in a biochemical system. Biophys. J. 1996;71(5):2375-2379.

86. Marzoli A., Renne P.R., Piccirillo E.M., Ernesto M., Bellieni G., De Min A. Extensive 200-million-year-old continental flood basalts of the central atlantic magmatic province. Science. 1999;284(5414): 616-618.

87. Mattila T.M., Bokma F. Extant mammal body masses suggest punctuated equilibrium. Proc. Biol. Sci. 2008;275(1648):2195-2199. DOI 10.1098/rspb.2008.0354.

88. Mayhew P.J., Bell M.A., Benton T.G., McGowan A.J. Biodiversity tracks temperature over time. Proc. Natl. Acad. Sci. USA. 2012; 109(38):15141-15145.

89. McElwain J.C., Beerling D.J., Woodward F.I. Fossil plants and global warming at the Triassic-Jurassic boundary. Science. 1999;285:1386-1390.

90. Medvedev M.V., Melott A.L. Do extragalactic cosmic rays induce cycles in fossil diversity? Astrophys. J. 2007;664(2):879-889. DOI 10.1086/518757.

91. Melott A.L. Long-term cycles in the history of life: periodic biodiversity in the paleobiology database. PLoS One. 2008;3(12):e4044. DOI 10.1371/journal.pone.0004044.

92. Melott A.L., Bambach R.K. Analysis of periodicity of extinction using the 2012 geological time scale. Paleobiology. 2014;40:177-196. DOI 10.1666/13047.

93. Melott A.L., Bambach R.K. Periodicity in the extinction rate and possible astronomical causes – comment on mass extinctions over the last 500 myr: an astronomical cause? (Erlykin et al.). Palaeontology. 2017;60:911-920. DOI 10.1111/pala.12322.

94. Melott A.L., Bambach R.K., Petersen K.D., McArthur J.M. An similar to 60-million-year periodicity is common to marine 87 Sr/86 Sr, fossil biodiversity, and large-scale sedimentation: what does the periodicity reflect? J. Geol. 2012;120(2):217-226. DOI 10.1086/663877.

95. Miller C.S., Peterse F., da Silva A.C., Baranyi V., Reichart G.J., Kürschner W.M. Astronomical age constraints and extinction mechanisms of the Late Triassic Carnian crisis. Sci. Rep. 2017;7(1):2557. DOI 10.1038/s41598-017-02817-7.

96. Newman M.E. A model of mass extinction. J. Theor. Biol. 1997a; 189(3):235-252.

97. Newman M.E. Evidence for self-organized criticality in evolution. Physica D. 1997b;107:293-296.

98. Nichol S.T., Rowe J.E., Fitch W.M. Punctuated equilibrium and positive Darwinian evolution in vesicular stomatitis virus. Proc. Natl. Acad. Sci. USA. 1993;90:10424-10428.

99. Novack-Gottshall P.M. Love, not war, drove the Mesozoic marine revolution. Proc. Natl. Acad. Sci. USA. 2016;113(51):14471-14473. DOI 10.1073/pnas.1617404113.

100. Nykter M., Price N.D., Aldana M., Ramsey S.A., Kauffman S.A., Hood L.E., Yli-Harja O., Shmulevich I. Gene expression dynamics in the macrophage exhibit criticality. Proc. Natl. Acad. Sci. USA. 2008;105(6):1897-1900. DOI 10.1073/pnas.0711525105.

101. Ovcharenko V.N. Transitional forms and speciation of brachiopods. Paleontologicheskii Zhurnal = Paleontological Journal. 1969;3: 57-63. (in Russian)

102. Pagel M., Venditti C., Meade A. Large punctuational contribution of speciation to evolutionary divergence at the molecular level. Science. 2006;314:119-121. DOI 10.1126/science.1129647.

103. Palmer S.A., Clapham A.J., Rose P., Freitas F.O., Owen B.D., Beresford-Jones D., Moore J.D., Kitchen J.L., Allaby R.G. Archaeogenomic evidence of punctuated genome evolution in Gossypium. Mol. Biol. Evol. 2012;29:2031-2038. DOI 10.1093/molbev/mss070.

104. Penn J.L., Deutsch C., Payne J.L., Sperling E.A. Temperature-dependent hypoxia explains biogeography and severity of end-Permian marine mass extinction. Science. 2018;362(6419):eaat1327. DOI 10.1126/science.aat1327.

105. Percival L.M.E., Davies J.H.F.L., Schaltegger U., De Vleeschouwer D., Da Silva A.C., Föllmi K.B. Precisely dating the Frasnian-Famennian boundary: implications for the cause of the Late Devonian mass extinction. Sci. Rep. 2018;8(1):9578. DOI 10.1038/s41598-018-27847-7.

106. Percival L.M.E., Ruhl M., Hesselbo S.P., Jenkyns H.C., Mather T.A., Whiteside J.H. Mercury evidence for pulsed volcanism during the end-Triassic mass extinction. Proc. Natl. Acad. Sci. USA. 2017; 114(30):7929-7934. DOI 10.1073/pnas.1705378114.

107. Peters S.E. Environmental determinants of extinction selectivity in the fossil record. Nature. 2008;454(7204):626-629. DOI 10.1038/nature07032.

108. Petersen H.I., Lindström S. Synchronous wildfire activity rise and mire deforestation at the Triassic-Jurassic boundary. PLoS One. 2012; 7(10):e47236. DOI 10.1371/journal.pone.0047236.

109. Prokoph A., Ernst R.E., Buchan K.L. Time-series analysis of large igneous provinces: 3500 Ma to present. J. Geol. 2004;112(1):1-22. DOI 10.1086/379689.

110. Rampino M.R. Disc dark matter in the Galaxy and potential cycles of extraterrestrial impacts, mass extinctions and geological events. MNRAS. 2015;448(2):1816-1820. DOI 10.1093/mnras/stu2708.

111. Rampino M.R., Caldeira K. Periodic impact cratering and extinction events over the last 260 million years. MNRAS. 2015;454(4):34803484. DOI 10.1093/mnras/stv2088.

112. Rampino M.R., Haggerty B.M., Pagano T.C. A unified theory of impact crises and mass extinctions: quantitative tests. Ann. N.Y. Acad. Sci. 1997;822:403-431.

113. Rampino M.R., Rodriguez S., Baransky E., Cai Y. Global nickel anomaly links Siberian Traps eruptions and the latest Permian mass extinction. Sci. Rep. 2017;7(1):12416. DOI 10.1038/s41598-017-12759-9.

114. Rampino M.R., Stothers R.B. Geological rhythms and cometary impacts. Science. 1984;226:1427-1431.

115. Rasmussen C.M.Ø., Kröger B., Nielsen M.L., Colmenar J. Cascading trend of Early Paleozoic marine radiations paused by Late Ordovician extinctions. Proc. Natl. Acad. Sci. USA. 2019;116(15):7207-7213. DOI 10.1073/pnas.1821123116.

116. Rasskin-Gutman D., Esteve-Altava B. The multiple directions of evolutionary change. Bioessays. 2008;30(6):521-525. DOI 10.1002/bies.20766.

117. Raup D.M., Sepkoski J.J. Jr. Mass extinctions in the marine fossil record. Science. 1982;215(4539):1501-1503.

118. Raup D.M., Sepkoski J.J. Periodicity of extinctions in the geologic past. Proc. Natl. Acad. Sci. USA. 1984;81(3):801-805.

119. Raup D.M., Sepkoski J.J. Jr. Periodic extinction of families and genera. Science. 1986;231:833-836.

120. Ricci J., Quidelleur X., Pavlov V., Orlov S., Shatsillo A., Courtillot V. New 40 Ar/39 Ar and K-Ar ages of the Viluy traps (Eastern Siberia): Further evidence for a relationship with the Frasnian-Famennian mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2013; 386:531-540. DOI 10.1016/j.palaeo.2013.06.020.

121. Roberts B.W., Newman M.E. A model for evolution and extinction. J. Theor. Biol. 1996;180(1):39-54.

122. Roberts G.G., Mannion P.D. Timing and periodicity of Phanerozoic marine biodiversity and environmental change. Sci. Rep. 2019;9(1): 6116. DOI 10.1038/s41598-019-42538-7.

123. Robertson D.S. Feedback theory and Darwinian evolution. J. Theor. Biol. 1991;152(4):469-484.

124. Rohde R.A., Muller R.A. Cycles in fossil diversity. Nature. 2005; 434(7030):208-210.

125. Sallan L.C., Coates M.I. End-Devonian extinction and a bottleneck in the early evolution of modern jawed vertebrates. Proc. Natl. Acad. Sci. USA. 2010;107(22):10131-10135. DOI 10.1073/pnas.0914000107.

126. Schaller M.F., Wright J.D., Kent D.V. Atmospheric PCO 2 perturbations associated with the Central Atlantic Magmatic Province. Science. 2011;331(6023):1404-1409. DOI 10.1126/science.1199011.

127. Schmitz B., Farley K.A., Goderis S., Heck P.R., Bergström S.M., Boschi S., Claeys P., Debaille V., Dronov A., van Ginneken M., Harper D.A.T., Iqbal F., Friberg J., Liao S., Martin E., Meier M.M.M., Peucker-Ehrenbrink B., Soens B., Wieler R., Terfelt F. An extraterrestrial trigger for the mid-Ordovician ice age: Dust from the breakup of the L-chondrite parent body. Sci. Adv. 2019;5(9):eaax4184. DOI 10.1126/sciadv.aax4184.

128. Schoene B., Eddy M.P., Samperton K.M., Keller C.B., Keller G., Adatte T., Khadri S.F.R. U-Pb constraints on pulsed eruption of the Deccan Traps across the end-Cretaceous mass extinction. Science. 2019;363(6429):862-866. DOI 10.1126/science.aau2422.

129. Schoene B., Samperton K.M., Eddy M.P., Keller G., Adatte T., Bowring S.A., Khadri S.F., Gertsch B. U-Pb geochronology of the Deccan Traps and relation to the end-Cretaceous mass extinction. Science. 2015;347(6218):182-184. DOI 10.1126/science.aaa0118.

130. Schulte P., Alegret L., Arenillas I., Arz J.A., Barton P.J., Bown P.R., Bralower T.J., Christeson G.L., Claeys P., Cockell C.S., Collins G.S., Deutsch A., Goldin T.J., Goto K., Grajales-Nishimura J.M., Grieve R.A., Gulick S.P., Johnson K.R., Kiessling W., Koeberl C., Kring D.A., MacLeod K.G., Matsui T., Melosh J., Montanari A., Morgan J.V., Neal C.R., Nichols D.J., Norris R.D., Pierazzo E., Ravizza G., Rebolledo-Vieyra M., Reimold W.U., Robin E., Salge T., Speijer R.P., Sweet A.R., Urrutia-Fucugauchi J., Vajda V., Whalen M.T., Willumsen P.S. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science. 2010;327(5970):1214-1218. DOI 10.1126/science.1177265.

131. Seaborg D.M. Evolutionary feedback: a new mechanism for stasis and punctuated evolutionary change based on integration of the organism. J. Theor. Biol. 1999;198(1):1-26.

132. Sepkoski J.J. Jr. Extinctions of life. Los Alamos Sci. 1988;16:36-49.

133. Sepkoski J.J. Jr. Periodicity in extinction and the problem of catastrophism in the history of life. J. Geol. Soc. London. 1989;146:7-19.

134. Sepkoski J.J. Jr. A compendium of fossil marine animal genera. Bull. Am. Paleontol. 2002;363:1-560.

135. Severtsov A.S. Interspecific variety as a cause of evolutionary stability. Zhurnal Obshchei Biologii = Journal of General Biology. 1990; 51(5):579-589. (in Russian)

136. Sheehan P.M. The Late Ordovician mass extinction. Annu. Rev. Earth Planet. Sci. 2001;29:331-364.

137. Sheets H.D., Mitchell C.E., Melchin M.J., Loxton J., Štorch P., Carlucci K.L., Hawkins A.D. Graptolite community responses to global climate change and the Late Ordovician mass extinction. Proc. Natl. Acad. Sci. USA. 2016;113(30):8380-8385. DOI 10.1073/pnas.1602102113.

138. Shen J., Chen J., Algeo T.J., Yuan S., Feng Q., Yu J., Zhou L., O’Connell B., Planavsky N.J. Evidence for a prolonged PermianTriassic extinction interval from global marine mercury records. Nat. Commun. 2019;10(1):1563. DOI 10.1038/s41467-019-09620-0.

139. Shen Y., Farquhar J., Zhang H., Masterson A., Zhang T., Wing B.A. Multiple S-isotopic evidence for episodic shoaling of anoxic water during Late Permian mass extinction. Nat. Commun. 2011;2:210. DOI 10.1038/ncomms1217.

140. Smolarek-Lach J., Marynowski L., Trela W., Wignall P.B. Mercury spikes indicate a volcanic trigger for the Late Ordovician mass extinction event: an example from a deep shelf of the Peri-Baltic region. Sci. Rep. 2019;9(1):3139. DOI 10.1038/s41598-019-39333-9.

141. Sneppen K., Bak P., Flyvbjerg H., Jensen M.H. Evolution as a selforganized critical phenomenon. Proc. Natl. Acad. Sci. USA. 1995; 92:5209-5213.

142. Solé R.V., Manrubia S.C. Extinction and self-organized criticality in a model of large-scale evolution. Phys. Rev. E. 1996;54(1):R42-R45.

143. Solé R.V., Saldaña J., Montoya J.M., Erwin D.H. Simple model of recovery dynamics after mass extinction. J. Theor. Biol. 2010;267(2): 193-200. DOI 10.1016/j.jtbi.2010.08.015.

144. Song H., Wignall P.B., Chu D., Tong J., Sun Y., Song H., He W., Tian L. Anoxia/high temperature double whammy during the Permian-Triassic marine crisis and its aftermath. Sci. Rep. 2014;4:4132. DOI 10.1038/srep04132.

145. Sun H., Xiao Y., Gao Y., Zhang G., Casey J.F., Shen Y. Rapid enhancement of chemical weathering recorded by extremely light seawater lithium isotopes at the Permian-Triassic boundary. Proc. Natl. Acad. Sci. USA. 2018;115(15):3782-3787. DOI 10.1073/pnas.1711862115.

146. Sutcliffe O.E., Dowdeswell J.A., Whittington R.J., Theron J.N., Craig J. Calibrating the Late Ordovician glaciation and mass extinction by the eccentricity cycles of Earth’s orbit. Geology. 2000;28(11): 967-970. DOI 10.1130/0091-7613(2000)028<0967:CTLOGA>2.3.CO;2.

147. Tanner L.H., Hubert J.F., Coffey B.P., McInerney D.P. Stability of atmospheric CO 2 levels across the Triassic/Jurassic boundary. Nature. 2001;411(6838):675-677.

148. Tennant J.P., Mannion P.D., Upchurch P. Sea level regulated tetrapod diversity dynamics through the Jurassic/Cretaceous interval. Nat. Commun. 2016;7:12737. DOI 10.1038/ncomms12737.

149. Them T.R. 2nd, Gill B.C., Caruthers A.H., Gerhardt A.M., Gröcke D.R., Lyons T.W., Marroquín S.M., Nielsen S.G., Trabucho Alexandre J.P., Owens J.D. Thallium isotopes reveal protracted anoxia during the Toarcian (Early Jurassic) associated with volcanism, carbon burial, and mass extinction. Proc. Natl. Acad. Sci. USA. 2018;115(26): 6596-6601. DOI 10.1073/pnas.1803478115.

150. Thibodeau A.M., Ritterbush K., Yager J.A., West A.J., Ibarra Y., Bottjer D.J., Berelson W.M., Bergquist B.A., Corsetti F.A. Mercury anomalies and the timing of biotic recovery following the end-Triassic mass extinction. Nat. Commun. 2016;7:11147. DOI 10.1038/ncomms11147.

151. Valentine J.W., Moores E.M. Plate-tectonic regulation of faunal diversity and sea level: a model. Nature. 1970;228:657-659.

152. Valverde S., Ohse S., Turalska M., West B.J., Garcia-Ojalvo J. Structural determinants of criticality in biological networks. Front. Physiol. 2015;6:127. DOI 10.3389/fphys.2015.00127.

153. Van Bocxlaer B., Damme D.V., Feibel C.S. Gradual versus punctuated equilibrium evolution in the Turkana Basin molluscs: evolutionary events or biological invasions? Evolution. 2008;62(3):511-520. DOI 10.1111/j.1558-5646.2007.00296.x.

154. Veizer J., Godderis Y., Francois L. Evidence for decoupling of atmospheric CO 2 and global climate during the Phanerozoic eon. Nature. 2000;408:698-701. DOI 10.1038/35047044.

155. Voje K.L. Tempo does not correlate with mode in the fossil record. Evolution. 2016;70(12):2678-2689. DOI 10.1111/evo.13090.

156. Voje K.L., Starrfelt J., Liow L.H. Model adequacy and microevolutionary explanations for stasis in the fossil record. Am. Nat. 2018; 191(4):509-523. DOI 10.1086/696265.

157. Wang X., Liu S.A., Wang Z.R., Chen D.Z., Zhang L.Y. Zinc and strontium isotope evidence for climate cooling and constraints on the Frasnian-Famennian (similar to 372 Ma) mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018;498:68-82. DOI 10.1016/j.palaeo.2018.03.002.

158. Whiteside J.H., Olsen P.E., Eglinton T., Brookfield M.E., Sambrotto R.N. Compound-specific carbon isotopes from Earth’s largest flood basalt eruptions directly linked to the end-Triassic mass extinction. Proc. Natl. Acad. Sci. USA. 2010;107(15):6721-6725. DOI 10.1073/pnas.1001706107.

159. Wignall P.B., Sun Y., Bond D.P., Izon G., Newton R.J., Védrine S., Widdowson M., Ali J.R., Lai X., Jiang H., Cope H., Bottrell S.H. Volcanism, mass extinction, and carbon isotope fluctuations in the Middle Permian of China. Science. 2009;324(5931):1179-1182. DOI 10.1126/science.1171956.

160. Williamson P.O. Palaeontological documentation of speciation in Cenozoic molluscs from Turkana basin. Nature. 1981;293:437-443.

161. Wolf Y.I., Viboud C., Holme E.C., Koonin E.V., Lipman D.J. Long intervals of stasis punctuated by bursts of positive selection in the seasonal evolution of influenza A virus. Biol. Direct. 2006;1:34. DOI 10.1186/1745-6150-1-34.

162. Xiao S., Laflamme M. On the eve of animal radiation: phylogeny, ecology and evolution of the Ediacara biota. Trends Ecol. Evol. 2009; 24(1):31-40.

163. Zaffos A., Finnegan S., Peters S.E. Plate tectonic regulation of global marine animal diversity. Proc. Natl. Acad. Sci. USA. 2017;114(22): 5653-5658. DOI 10.1073/pnas.1702297114.

164. Zhang F., Romaniello S.J., Algeo T.J., Lau K.V., Clapham M.E., Richoz S., Herrmann A.D., Smith H., Horacek M., Anbar A.D. Multiple episodes of extensive marine anoxia linked to global warming and continental weathering following the latest Permian mass extinction. Sci. Adv. 2018a;4(4):e1602921. DOI 10.1126/sciadv.1602921.

165. Zhang F., Xiao S., Kendall B., Romaniello S.J., Cui H., Meyer M., Gilleaudeau G.J., Kaufman A.J., Anbar A.D. Extensive marine anoxia during the terminal Ediacaran Period. Sci. Adv. 2018b;4(6):eaan8983. DOI 10.1126/sciadv.aan8983.

166. Zhu Z., Liu Y., Kuang H., Benton M.J., Newell A.J., Xu H., An W., Ji S., Xu S., Peng N., Zhai Q. Altered fluvial patterns in North China indicate rapid climate change linked to the Permian-Triassic mass extinction. Sci. Rep. 2019;9(1):16818. DOI 10.1038/s41598-019-53321-z.


Просмотров: 97


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-0462 (Print)
ISSN 2500-3259 (Online)