Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Diagnosis of the mechanisms of different types of discordances between phylogenies inferred from nuclear and mitochondrial markers

https://doi.org/10.18699/VJ20.634

Abstract

In ancient freshwater lakes, an abnormally large species diversity is observed. The mechanisms that g nerated extremely high biodiversity in the ancient lakes have not been sufficiently studied and remain only partially known. Sequences of environmental changes in highly complex ecosystems such as Lake Baikal, may induce sophisticated combinations of microevolutionary processes. These processes are likely to result in unusual “patterns” of genetic variability of species. The most unusual patterns include the ones when speciation is followed by incomplete lineage sorting as well as mitochondrial or nuclear introgression. All these phenomena are diagnosed by comparing the topologies of phylogenetic trees inferred from molecular markers of evolution located in mitochondria and nuclei. Mitochondrial and nuclear introgression is a particularly interesting and complex case, which is the process of incorporating the gene alleles of one species into the gene pool of a sister species due to interspecific hybridization (introgressive hybridization). In many cases, existing methods for molecular phylogenetic analysis do not automatically allow the observed patterns of polymorphism to be explained and, therefore, cannot provide hypotheses that would explain the mechanisms which resulted to these patterns. Here we use adaptive dynamics models to study neutral molecular evolution under various scenarios of interaction between sister species and the environment. We propose and justify a set of criteria for detecting how two evolutionary trees may differ, with a special focus on comparing a tree inferred from nuclear DNA to one from mitochondrial DNA. The criteria react to branching pattern and branch lengths, including relative distances from ancestral lineages. Simulations show that the criteria allow fast and automated detection of various types of introgression, secondary breaches of reproductive barriers, and incomplete lineage sorting.

About the Authors

A. A. Poroshina
Limnological Institute of Siberian Branch of the Russian Academy of Sciences
Russian Federation
Irkutsk


D. Y. Sherbakov
Limnological Institute of Siberian Branch of the Russian Academy of Sciences
Russian Federation
Irkutsk


T. E. Peretolchina
Limnological Institute of Siberian Branch of the Russian Academy of Sciences
Russian Federation
Irkutsk


References

1. Anisimova M., Gascuel O. Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst. Biol. 2006; 55(4):539-552. DOI 10.1080/10635150600755453.

2. Brooks J.L. Speciation in ancient lakes (concluded). Quart. Rev. Biol. 1950;25(2):131-176. DOI 10.1086/397539.

3. Felsenstein J., Felenstein J. Inferring Phylogenies. Vol. 2. Sinauer Associates. Sunderland, 2004.

4. Folmer O., Black M., Hoeh W., Lutz R., Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994;3:294-299.

5. Grimm V., Railsback S.F. Individual-Based Modeling and Ecology. Princeton: Princeton University Press, 2005.

6. Guindon S., Dufayard J.F., Lefort V., Anisimova M., Hordijk W., Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 2010;59(3):307-321. DOI 10.1093/sysbio/syq010.

7. Huerta-Cepas J., Dopazo J., Gabaldón T. ETE: a python environment for tree exploration. BMC Bioinformatics. 2010;11(1);24. DOI 10.1186/1471-2105-11-24.

8. Kéver L., Parmentier E., Derycke S., Verheyen E., Snoeks J., Steenberge M., Poncin P. Limited possibilities for prezygotic barriers in the reproductive behaviour of sympatric Ophthalmotilapia species (Teleostei, Cichlidae). Zoology. 2018;126:71-81. DOI 10.1016/j.zool.2017.12.001.

9. Nazar R.N., Roy K.L. Nucleotide sequence of rainbow trout (Salmo gairdneri) ribosomal 5.8 S ribonucleic acid. J. Biol. Chem. 1978; 253(2):395-399.

10. Nevado B., Koblmüller S., Sturmbauer C., Snoeks J., Usano-Alemany J., Verheyen E. Complete mitochondrial DNA replacement in a Lake Tanganyika cichlid fish. Mol. Ecol. 2009;18(20):4240-4255. DOI 10.1111/j.1365-294X.2009.04348.x.

11. Peretolchina T.E., Bukin Y.S., Sitnikova T.Y., Sherbakov D.Y. Genetic differentiation of the endemic Baikalian mollusk Baicalia carinata (Mollusca: Caenogastropoda). Russ. J. Genet. 2007;43(12):14001407. DOI 10.1134/S1022795407120095.

12. Salzburger W., Van Bocxlaer B., Cohen A.S. Ecology and evolution of the African Great Lakes and their faunas. Annu. Rev. Ecol. Evol. Syst. 2014;45:519-545. DOI 10.1146/annurev-ecolsys-120213-091804.

13. Schön I., Martens K. Molecular analyses of ostracod flocks from Lake Baikal and Lake Tanganyika. Hydrobiologia. 2012;682(1):91-110. DOI 10.1007/s10750-011-0935-6.

14. Semovski S.V., Verheyen E., Sherbakov D.Y. Simulating the evolution of neutrally evolving sequences in a population under environmental changes. Ecol. Modelling. 2004;176(1-2):99-107. DOI 10.1016/j.ecolmodel.2003.07.013.

15. Sherbakov D.Y. Molecular phylogenetic studies on the origin of biodiversity in Lake Baikal. Trends Ecol. Evol. 1999;14(3):92-95. DOI 10.1016/S0169-5347(98)01543-2.

16. Sitnikova T., Kovalenkova M., Peretolchina T., Sherbakov D. A new, genetically divergent species of Pseudobaikalia Lindholm, 1909 (Caenogastropoda, Baicaliidae). ZooKeys. 2016;593:1. DOI 10.3897/zookeys.593.8511.

17. Sokolov E.P. An improved method for DNA isolation from mucopolysaccharide-rich molluscan tissues. J. Moll. Stud. 2000;66(4):573-575. DOI 10.1093/mollus/66.4.573.

18. Sturmbauer C., Salzburger W., Duftner N., Schelly R., Koblmüller S. Evolutionary history of the Lake Tanganyika cichlid tribe Lamprologini (Teleostei: Perciformes) derived from mitochondrial and nuclear DNA data. Mol. Phylogenet. Evol. 2010;57(1):266-284. DOI 10.1016/j.ympev.2010.06.018.

19. Toews D.P.L., Brelsford A. The biogeography of mitochondrial and nuclear discordance in animals. Mol. Ecol. 2012;21(16):3907-3930. DOI 10.1111/j.1365-294X.2012.05664.x.

20. Zubakov D.I., Shcherbakov D.I., Sitnikova T.I. Analysis of phylogeny of endemic mollusca of family Baicaliidae, Clessin 1878 (Gastropoda, Pectinibranchia) from Baical lake using fragments of nucleotide sequences of the mitochondrial gene CO1. Mol. Biol. (Moscow). 1997;31(6):1092-1097.


Review

Views: 854


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)