Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Adaptation of the sulfophosphovanillin method of analysis of total lipids for various biological objects as exemplified by Drosophila melanogaster

https://doi.org/10.18699/VJ20.636

Abstract

Lipid metabolism is crucial in physiology. In recent decades the model object Drosophila melanogaster has been actively used in the study of the fundamental issues of lipid metabolism and its disorders, including obesity, as well as in the search for therapeutic goals for the treatment of metabolic disorders in humans. Quick and accurate quantification of lipid content is an important step in solving these problems. For the first time the method of quantitative measurement of total lipids with the use of the sulfophosphovanillin (SPV) method was described by Zöllner and colleagues in 1962, and adapted for insects by Van Handel on females of the yellow fever mosquito Aedes aegypti. The advantages of this method compared to traditional gravimetric and chromatographic methods of analysis are the use of a small amount of biological material, lack of need for complex manipulations with the sample, its high sensitivity, reproducibility and simplicity of implementation with a minimum set of equipment. Here, a modification of the Van Handel protocol is described, which allows the method to be adapted for quantitative determination of total lipids for various organisms as exemplified a widely used model, D. melanogaster. To test the effectiveness of the modified method, we measured the content of total lipids in D. melanogaster females carrying hypomorphic mutations of the dilp6 and dfoxo insulin signaling pathway genes compared to the wild-type Canton-S line, and showed that dilp6 took part in the regulation of fat metabolism, while dfoxo did not. The results obtained emphasize the effectiveness of the colorimetric method with the use of SPV reaction and spectrophotometry for the quantitative analysis of total lipids.

About the Authors

M. A. Eremina
Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
Russian Federation
Novosibirsk


N. E. Gruntenko
Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
Russian Federation
Novosibirsk


References

1. Eremina M.A., Karpova E.K., Rauschenbach I.Yu., Pirozhkova D.S., Andreenkova O.V., Gruntenko N.E. Mutations in the insulin signaling pathway genes affect carbohydrate level under heat stress in Drosophila melanogaster females. Russ. J. Genet. 2019;55(4): 519-521. DOI 10.1134/S1022795419030050.

2. Rostovtsev V.N., Reznik G.E. Quantification of lipid fractions in blood. Laboratornoe Delo = Laboratory Science. 1982;4:26-29. (in Russian)

3. Abdullah S., Davies S., Wall R. Spectrophotometric analysis of lipid used to examine the phenology of the tick Ixodes ricinus. Parasit Vectors. 2018;11:523. DOI 10.1186/s130-71-018-3102-3.

4. Al-Anzi B., Zinn K. Colorimetric measurement of triglycerides cannot provide an accurate measure of stored fat content in Drosophila. PLoS One. 2010;5(8):e12353. DOI 10.1371/journal.pone.0012353.

5. Álvarez-Rendón J.P., Salceda R., Riesgo-Escovar J.R. Drosophila melanogaster as a model for diabetes type 2 progression. BioMed. Res. Int. 2018;2018:1417528. DOI 10.1155/2018/1417528.

6. Anschau А., Caruso C.S., Kuhn R.C., Franco T.T. Validation of the sulfo-phospho-vanillin (spv) method for the determination of lipid content in oleaginous microorganisms. Braz. J. Chem. Eng. 2017; 34(1):19-27. DOI 10.1590/0104-6632.20170341s20140222.

7. Bozdoğan H., Erbey M., Aksoy H.A. Total amount of protein, lipid and carbohydrate of some adult species belong to curculionidae family (Coleoptera: Curculionidae). J. Entomol. Zool. Stud. 2016;4(5):242-248.

8. Byreddy A.R., Gupta A., Barrow C.J., Puri M. A quick colorimetric method for total lipid quantification in microalgae. J. Microbiol. Meth. 2016;125:28-32.

9. Cheng Y.S., Zheng Y., VanderGheynst J.S. Rapid quantitative analysis of lipids using a colorimetric method in a microplate format. Lipids. 2011;46(1):95-103. DOI 10.1007/s11745-010-3494-0.

10. Dionne M.S., Pham L.N., Shirasu-Hiza M., Schneider D.S. Akt and FOXO dysregulation contribute to infection-induced wasting in Drosophila. Curr. Biol. 2006;16:1977-1985.

11. Foray V., Pelisson P.-F., Venner M.C.B., Desouhant E., Venner S., Menu F., Giron D., Rey B. A handbook for uncovering the complete energetic budget in insects: the van Handel’s method (1985) revisited. Physiol. Entomol. 2012;37:295-302. DOI 10.1111/j.13653032.2012.00831.x.

12. Fukumura K., Konuma T., Tsukamoto Y., Nagata S. Adipokinetic hormone signaling determines dietary fatty acid preference through maintenance of hemolymph fatty acid composition in the cricket Gryllus bimaculatus. Sci. Rep. 2018;8:4737. DOI 10.1038/s41598018-22987-2.

13. Gontijo A.M., Garelli A. The biology and evolution of the Dilp8Lgr3 pathway: a relaxin-like pathway coupling tissue growth and developmental timing control. Mech. Dev. 2018;154:44-50. DOI 10.1016/j.mod.2018.04.005.

14. Gruntenko N.E., Adonyeva N.V., Burdina E.V., Karpova E.K., Andreenkova O.V., Gladkikh D.V., Ilinsky Y.Y., Rauschenbach I.Yu. The impact of FOXO on dopamine and octopamine metabolism in Drosophila under normal and heat stress conditions. Biol. Open. 2016;5:1706-1711. DOI 10.1242/bio.022038.

15. Gruntenko N.E., Rauschenbach I.Y. The role of insulin signalling in the endocrine stress response in Drosophila melanogaster: a minireview. Gen. Comp. Endocrinol. 2018;258:134-139. DOI 10.1016/j.ygcen.2017.05.019.

16. Hildebrandt A., Bickmeyer I., Kühnlein R.P. Reliable Drosophila body fat quantification by a coupled colorimetric assay. PLoS One. 2011; 6(9):e23796. DOI 10.1371/journal.pone.0023796.

17. Kleinert M., Clemmensen C., Hofmann S.M., Moore M.C., Renner S., Woods S.C., Huypens P., Beckers J., de Angelis M.H., Schürmann A., Bakhti M., Klingenspor M., Heiman M., Cherrington A.D., Ristow M., Lickert H., Wolf E., Havel P.J., Müller T.D., Tschöp M.H. Animal models of obesity and diabetes mellitus. Nat. Rev. Endocrinol. 2018;14(3):140-162. DOI 10.1038/nrendo.2017.161.

18. Knight J.A., Anderson S., Rawle J.M. Chemical basis of the sulfo-phospho-vanillin reaction for estimating total serum lipids. Clin. Chem. 1972;18(3):199-202.

19. Lee C.L. What we can learn from the energetic levels of insects: a guide and review. Ann. Entomol. Soc. Am. 2019;112(3):220-226. DOI 10.1093/aesa/say051.

20. Liu Z., Huang X. Lipid metabolism in Drosophila: development and disease. Acta Biochim. Biophys. Sin. (Shanghai). 2013;45(1):44-50. DOI 10.1093/abbs/gms105.

21. Lu Y., Ludsin S.A., Fanslow D.L., Pothoven S.A. Comparison of three microquantity techniques for measuring total lipids in fish. Can. J. Fish. Aquat. Sci. 2008;65:2233-2241. DOI 10.1139/F08-135.

22. Murillo-Maldonado J.M., Sánchez-Chávez G., Salgado L.M., Salceda R., Riesgo-Escovar J.R. Drosophila insulin pathway mutants affect visual physiology and brain function besides growth, lipid, and carbohydrate metabolism. Diabetes. 2011;60(5):1632-1636. DOI 10.2337/db10-1288.

23. Musselman L.P., Kühnlein R.P. Drosophila as a model to study obesity and metabolic disease. J. Exp. Biol. 2018;221(Suppl.1):jeb163881. DOI 10.1242/jeb.163881.

24. Park J., Jeong H.J., Yoon E.Y., Moon S.J. Easy and rapid quantification of lipid contents of marine dinoflagellates using the sulpho-phosphovanillin method. Algae. 2016;31(4):391-401. DOI 10.4490/algae.2016.31.12.7.

25. Patel A., Antonopoulou I., Enman J., Rova U., Christakopoulos P., Matsakas L. Lipids detection and quantification in oleaginous microorganisms: an overview of the current state of the art. BMC Chem. Eng. 2019;1:13. DOI 10.1186/s42480-019-0013-9.

26. Rauschenbach I.Yu., Karpova E.K., Burdina E.V., Adonyeva N.V., Bykov R.A., Ilinsky Y.Y., Menshanov P.N., Gruntenko N.E. Insulinlike peptide DILP6 regulates juvenile hormone and dopamine metabolism in Drosophila females. Gen. Comp. Endocrinol. 2016;243: 1-9. DOI 10.1016/j.ygcen.2016.11.0040016-6480.

27. Tennessen J.M., Barry W.E., Cox J., Thummel C.S. Methods for studying metabolism in Drosophila. Methods. 2014;68(1):105-115. DOI 10.1016/j.ymeth.2014.02.034.

28. Trinh I., Boulianne G.L. Modeling obesity and its associated disorders in Drosophila. Physiology. 2013;28:117-124. DOI 10.1152/physiol.00025.2012.

29. Van Handel E. Rapid determination of total lipids in mosquitoes. J. Am. Mosq. Control Assoc. 1985;1:302-304.


Review

Views: 910


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)