Preview

Vavilov Journal of Genetics and Breeding

Advanced search

MOLECULAR DATING OF INTRASPECIFIC DIFFERENTIATION OF THE STOAT (MUSTELA ERMINEA) BASED ON THE VARIABILITY OF THE MITOCHONDRIAL ND2 GENE

Abstract

Nucleotide sequences of the NADH dehydrogenase subunit 2 gene (ND2) of mitochondrial DNA (mtDNA) were determined in stoats (Mustela erminea) from northeastern Kamchatka. Analysis of the data on ND2 variability in stoats presented here and in earlier studies shows that the divergence level between American and Eurasian mtDNA haplotypes is about 5 %, whereas that among Eurasian ones is as low as 0,5 %. The results of phylogenetic analysis also point to a highly significant differentiation between the American and Eurasian mtDNA lineages, whereas a single Kamchatkan cluster of mtDNA haplotypes is recognized in the Eurasian mtDNA clade with high confidence. Molecular dating shows that the separation of ancestral population of the stoat occurred approximately 1,3–1,6 million years before present (BP), but the Eurasian mtDNA lineages diverged about 300 thousand years (ka) BP. The evolutionary age of Kamchatkan mtDNA haplotypes is about 95–120 ka, which contradicts the suggestions of other authors about post-last glacial (19–26,5 ka BP) recolonization of Eurasia by stoat populations. This inconsistency is discussed.

About the Authors

B. A. Malyarchuk
Institute of Biological Problems of the North, Far-East Branch of Russian Academy of Sciences, Magadan, Russia
Russian Federation


G. A. Denisova
Institute of Biological Problems of the North, Far-East Branch of Russian Academy of Sciences, Magadan, Russia
Russian Federation


M. V. Derenko
Institute of Biological Problems of the North, Far-East Branch of Russian Academy of Sciences, Magadan, Russia
Russian Federation


References

1. Абрамсон Н.И. Филогеография: итоги, проблемы, перспективы // Информ. вестн. ВОГиС. 2007. Т. 11. № 2. С. 307–331.

2. Графодатский A.C., Волобуев В.Т., Терновский Д.В., Раджабли С.И. G-окраска хромосом семи видов куньих (Carnivora, Mustelidae) // Зоол. журнал. 1976. Т. 55. № 11. С. 1704–1709.

3. Лушникова Т.П., Омельянчук Л.В., Графодатский A.C. Филогенетические отношения близкородственных видов семейства куницеобразных. Межвидовая изменчивость локализации рестрикционных сайтов BamHI повторов // Генетика. 1989. Т. 25. № 6. С. 1089–1094.

4. Малярчук Б.А. Адаптивная внутривидовая дивергенция (на примере гена цитохрома b животных) // Генетика. 2011. Т. 47. № 8. C. 1103–1111.

5. Павлинов И.Я. Природа России: жизнь животных. Млекопитающие (часть 1). М.: АСТ, 1999. 608 с.

6. Рогозин И.Б., Глазко В.И., Кунин Е.В. Молекулярная основа закона рядов гомологической изменчивости Н.И. Вавилова // Информ. вестн. ВОГиС. 2008. Т. 12. № 3. С. 362–371.

7. Рожнов В.В., Мещерский И.Г., Пищулина С.Л. и др. Генетический анализ популяций соболя (Martes zibellina) и лесной куницы (M. martes) в районах совместного обитания на Северном Урале // Генетика. 2010. Т. 46. № 4. С. 553–557.

8. Рожнов В.В., Пищулина С.Л., Мещерский И.Г. и др. Генетическая структура соболя (Martes zibellina L.) Евразии – анализ распределения митохондриальных линий // Генетика. 2013. Т. 49. № 2. С. 251–258.

9. Avise J.C. Gene trees and organismal histories: a phylogenetic approach to the population biology // Evolution. 1989. V. 43. P. 1192–1208.

10. Clark P.U., Dyke A.S., Shakun J.D. et al. The last glacial maximum // Science. 2009. V. 325. P. 710–714.

11. Delisle I., Strobeck C. A phylogeny of the Caniformia (order Carnivora) based on 12 complete protein-coding mitochondrial genes // Mol. Phylogenet. Evol. 2005. V. 37. P. 192–201.

12. Domingo-Roura X., Lopez-Giraldez F., Saeki M., Marmi J. Phylogenetic inference and comparative evolution of a complex microsatellite and its fl anking regions in carnivores // Genet. Res. 2005. V. 85. P. 223–233.

13. Drummond A.J., Suchard M.A. Xie D. et al. Bayesian phylogenetics with BEAUti and the BEAST 1.7 // Mol. Biol. Evol. 2012. V. 29. P. 1969–1973.

14. Finnila S., Lehtonen M.S., Majamaa K. Phylogenetic network for European mtDNA // Am. J. Hum. Genet. 2001. V. 68. P. 1475–1484.

15. Fleming M.A., Cook J.A. Phylogeography of endemic ermine (Mustela erminea) in southeast Alaska // Mol. Ecol. 2002. V. 11. P. 795–807.

16. Flynn J.J., Finarelli J.A., Zehr S. et al. Molecular phylogeny of the Carnivora (Mammalia): Assessing the impact of increased sampling on resolving enigmatic relationships // Syst. Biol. 2005. V. 54. P. 317–337.

17. Fulton T.L., Strobeck C. Novel phylogeny of the raccoon family (Procyonidae: Carnivora) based on nuclear and mitochondrial DNA evidence // Mol. Phylogenet. Evol. 2007. V. 43. P. 1171–1177.

18. Harding L.E., Smith F.A. Mustela or Vison? Evidence for the taxonomic status of the American mink and a distinct biogeographic radiation of American weasels // Mol. Phylogenet. Evol. 2009. V. 52. P. 632–642.

19. Hosoda T., Sato J.J., Lin L.-K. et al. Phylogenetic history of mustelid fauna in Taiwan inferred from mitochondrial genetic loci // Can. J. Zool. 2011. V. 89. P. 559–569.

20. Hosoda T., Sato J.J., Shimada K.L. et al. Independent nonframeshift deletions in the MC1R gene are not associated with melanistic coat coloration in three Mustelid lineages // J. Hered. 2005. V. 96. P. 607–613.

21. Irwin D.E. Phylogeographic breaks without geographic barriers to gene fl ow // Evolution. 2002. V. 56. P. 2383–2394.

22. King C.M. Mustela erminea // Mammal Sp. 1983. V. 195. P. 1–8.

23. Koepfl i K.-P., Deere K.A., Slater G.J. et al. Multigene phylogeny of the Mustelidae: Resolving relationships, tempo and biogeographic history of a mammalian adaptive radiation // BMC Biol. 2008. V. 6. P. 10.

24. Koepfl i K.-P., Wayne R.K. Phylogenetic relationships of otters (Carnivora: Mustelidae) based on mitochondrial cytochrome b sequences // J. Zool. 1998. V. 246. P. 401–416.

25. Kurose N., Abramov A.V., Masuda R. Comparative phylogeography between the ermine Mustela ermine and the least weasel M. nivalis of Palaearctic and Nearctic regions, based on analysis of mitochondrial DNA control region sequences // Zool. Sci. 2005. V. 22. P. 1069–1078.

26. Kurten B., Anderson E. Pleistocene Mammals of North America. N.Y.: Columbia Univ. Press, 1980. 442 p.

27. Li B., Malyarchuk B., Ma Z. et al. Phylogeography of sable (Martes zibellina L. 1758) in the southeast portion of its range based on mitochondrial DNA variation: highlighting the evolutionary history of the sable // Acta Theriol. 2013. V. 58. P. 139–148.

28. Malyarchuk B.A., Rogozin I.B., Berikov V.B., Derenko M.V. Analysis of phylogenetically reconstructed mutational spectra in human mitochondrial DNA control region // Hum. Genet. 2002. V. 111. P. 46–53.

29. Martinkova N., McDonald R.A., Searle J.B. Stoats (Mustela erminea) provide evidence of natural overland colonization of Ireland // Proc. R. Soc. B. 2007. V. 274. P. 1387–1393.

30. Sato J.J., Hosoda T., Kryukov A.P. et al. Genetic diversity of the sable (Martes zibellina, Mustelidae) in Russian Far East and Hokkaido inferred from mitochondrial NADH dehydrogenase subunit 2 gene sequences // Mamm. Stud. 2011. V. 36. P. 209–222.

31. Sato J.J., Yasuda S.P., Hosoda T. Genetic diversity of the Japanese marten (Martes melampus) and its implications for the conservation unit // Zool. Sci. 2009. V. 26. P. 457–466.

32. Tamura K., Peterson D., Peterson N. et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods // Mol. Biol. Evol. 2011. V. 28. P. 2731–2739.

33. Xu C.Z., Zhang H.H., Ma J.Z. et al. The complete mitochondrial genome of sable, Martes zibellina // Mitochondrial DNA. 2012. V. 23. P. 167–169.


Review

Views: 640


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)