Консенсусная микросателлитная карта ржи с интегрированными EST-SSR маркерами пшеницы
https://doi.org/10.18699/VJ20.48-o
Аннотация
Микросателлитные (SSR) маркеры широко используют для картирования генов ржи и анализа транслокационных линий пшеницы и тритикале. SSR-маркеры с известной внутрихромосомной локализацией очень востребованы для картирования экономически значимых генов и QTL-анализа. Одним из источников новых SSR-маркеров у ржи являются микросателлитные маркеры пшеницы. Несмотря на несколько наборов микросателлитных маркеров, доступных у ржи, по-прежнему необходимо расширение списка SSR, сопоставленных с хромосомами ржи, поскольку на некоторых генетических картах количество SSR-маркеров невелико. Цель настоящего исследования состояла в том, чтобы интегрировать EST-SSR пшеницы в существующие генетические карты ржи и построить консенсусную микросателлитную карту ржи. Четыре картирующих популяции ржи (P87/P105, N6/N2, N7/N2 и N7/N6) тестировали с использованием праймеров CFE (EST-SSR). В результате в молекулярно-генетические карты ржи было интегрировано 23 микросателлитных локуса Xcfe: Xcfe023, -136 и -266 на хромосоме 1R, Xcfe006, -067, -175 и -187 на 2R, Xcfe029 и -282 на 3R, Xcfe004, -100, -152, -224 и -260 на 4R, Xcfe037, -208 и -270 на 5R, Xcfe124, -159 и -277 на 6R, Xcfe010, -143 и -228 на 7R. За исключением Xcfe159 и Xcfe224, все картированные локусы Xcfe были обнаружены в ортологичных позициях с учетом множественных транслокаций в ходе эволюции генома ржи по сравнению с пшеницей. Консенсусная карта построена с использованием данных по четырем картирующим популяциям ржи. Она содержит в общей сложности 123 микросателлитных маркера, 12 SNP, 118 RFLP и 2 изоферментных локуса.
Об авторах
Д. О. ВидаковичГермания
Кведлинбург, Нови-Сад, Сербия
Д. Перович
Германия
Кведлинбург
Т. В. Семилет
Россия
Санкт-Петербург
А. Бернер
Германия
Гатерслебен
Е. К. Хлесткина
Россия
Санкт-Петербург, Новосибирск
Список литературы
1. Adonina I.G., Orlovskaya O.A., Tereshchenko O.Y., Koren L.V., Khotyleva L.V., Shumny V.K., Salina E.A. Development of commercially valuable traits in hexaploid triticale lines with Aegilops introgressions as dependent on the genome composition. Russ. J. Genet. 2011;47:453-461. DOI 10.1134/S1022795411040028.
2. Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool. J. Mol. Biol. 1990;215:403-410. DOI 10.1016/S0022-2836(05)80360-2.
3. Bauer E., Schmutzer T., Barilar I., Mascher M., Gundlach H., Martis M.M., Twardziok S.O., Hackauf B., Gordillo A., Wilde P., Schmidt M., Korzun V., Mayer K.F.X., Schmid K., Schön C.-C., Scholz U. Towards a whole-genome sequence for rye (Secale cereale L.). Plant J. 2017;89:853-869. DOI 10.1111/tpj.13436.
4. Bednarek P.T., Masojc P., Lewandowska R., Myskow B. Saturating rye genetic map with amplified fragment length polymorphism (AFLP) and random amplified polymorphic DNA (RAPD) markers. J. Appl. Genet. 2003;44:21-33.
5. Benito C., Silva-Navas J., Fontecha G., Hernández-Riquer M.V., Eguren M., Salvador N., Gallego F.J. From the rye Alt3 and Alt4 aluminum tolerance loci to orthologous genes in other cereals. Plant Soil. 2010;327:107-120. DOI 10.1007/s11104-009-0035-9.
6. Bolibok H., Rakoczy-Trojanowska M., Hromada A., Pietrzykowski R. Efficiency of different PCR-based marker systems in assessing genetic diversity among winter rye (Secale cereale L.) inbred lines. Euphytica. 2005;146:109-116. DOI 10.1007/s10681-005-0548-0.
7. Bolibok-Brągoszewska H., Heller-Uszyńska K., Wenzl P., Uszyński G., Kilian A., Rakoczy-Trojanowska M. DArT markers for the rye genome-genetic diversity and mapping. BMC Genomics. 2009;10: 578. DOI 10.1186/1471-2164-10-578.
8. Devos K.M., Atkinson M.D., Chinoy C.N., Francis H.A., Harcourt R.L., Koebner R.M.D., Liu C.J., Masojc P., Xie D.X., Gale M.D. Chromosomal rearrangements in the rye genome relative to that of wheat. Theor. Appl. Genet. 1993;85:673-680. DOI 10.1007/BF00225004.
9. Dobrovolskaya O., Martinek P., Voylokov A.V., Korzun V., Röder M.S., Börner A. Microsatellite mapping of genes that determine supernumerary spikelets in wheat (T. aestivum) and rye (S. cereale). Theor. Appl. Genet. 2009;119:867-874. DOI 10.1007/s00122-009-1095-1.
10. Dolmatovich T.V., Malyshev S.V., Sosnikhina S.P., Tsvetkova N.V., Kartel N.A., Voylokov A.V. Mapping of meiotic genes in rye (Secale cereale L.): Localization of sy18 mutation with impaired homologous synapsis using microsatellite markers. Russ. J. Genet. 2013a; 49:411-416. DOI 10.1134/S1022795413040030.
11. Dolmatovich T.V., Malyshev S.V., Sosnikhina S.P., Tsvetkova N.V., Kartel N.A., Voylokov A.V. Mapping of meiotic genes in rye (Secale cereale L.): Localization of sy19 mutation with impaired homologous synapsis using microsatellite markers. Russ. J. Genet. 2013b; 49:511-516. DOI 10.1134/S1022795413030058.
12. Fontecha G., Silva-Navas J., Benito C., Mestres M.A., Espino F.J., Hernández-Riquer M.V., Gallego F.J. Candidate gene identification of an aluminum-activated organic acid transporter gene at the Alt4 locus for aluminium tolerance in rye (Secale cereale L.). Theor. Appl. Genet. 2007;114:249-260. DOI 10.1007/s00122-006-0427-7.
13. Gustafson J.P., Ma X.F., Korzun V., Snape J.W. A consensus map of rye integrating mapping data from five mapping populations. Theor. Appl. Genet. 2009;118:793-800. DOI 10.1007/s00122-008-0939-4.
14. Hackauf B., Haffke S., Fromme F.J., Roux S.R., Kusterer B., Musmann D., Kilian A., Miedaner T. QTL mapping and comparative genome analysis of agronomic traits including grain yield in winter rye. Theor. Appl. Genet. 2017;130:1801-1817. DOI 10.1007/s00122-017-2926-0.
15. Hackauf B., Wehling P. Development of microsatellite markers in rye: map construction. Plant Breed. Seed Sci. 2003;48:143-151.
16. Khlestkina E.K., Dobrovolskaya O.B., Leonova I.N., Salina E.A. Diversification of the duplicated F3h genes in Triticeae. J. Mol. Evol. 2013;76:261-266. DOI 10.1007/s00239-013-9554-3.
17. Khlestkina E.K., Myint Than M.H., Pestsova E.G., Röder M.S., Malyshev S.V., Korzun V., Börner A. Mapping of 99 new microsatellitederived loci in Rye (Secale cereale L.) including 39 expressed sequencing tags. Theor. Appl. Genet. 2004;109:725-732. DOI 10.1007/s00122-004-1659-z.
18. Khlestkina E.K., Salina E.A., Matthies I., Leonova I.N., Börner A., Röder M.S. Comparative molecular marker-based genetic mapping of flavanone 3-hydroxylase genes in wheat, rye and barley. Euphytica. 2011;179:333-341. DOI 10.1007/s10681-010-0337-2.
19. Khlestkina E.K., Tereshchenko O.Yu., Salina E.A. Anthocyanin biosynthesis genes location and expression in wheat-rye hybrids. Mol. Genet. Genom. 2009;282:475-485. DOI 10.1007/s00438-009-0479-x.
20. Korzun V., Malyshev S., Voylokov A.V., Börner A. A genetic map of rye (Secale cereale L.) combining RFLP, isozyme, protein, microsatellite and gene loci. Theor. Appl. Genet. 2001;102:709-717. DOI 10.1007/s001220051701.
21. Kosambi D.D. The estimation of map distances from recombination values. Ann. Eugen. 1944;12(1):172-175. DOI 10.1111/j.1469-1809.1943.tb02321.x.
22. Lander E.S., Green P., Abrahamson J., Barlow A., Daly M.J., Lincoln S.E., Newburg I. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics. 1987;1:174-181.
23. Lapitan N.L.V., Peng J., Sharma V. A high-density map and PCR markers for Russian wheat aphid resistance gene on chromosome 1RS/1BL. Crop Sci. 2007;47:811-818. DOI 10.2135/cropsci2006.08.0529.
24. Li J., Zhou R., Endo T.R., Stein N. High-throughput development of SSR marker candidates and their chromosomal assignment in rye (Secale cereale L.). Plant Breed. 2018;137:561-572. DOI 10.1111/pbr.12619.
25. Malyshev S.V., Dolmatovich T.V., Voylokov A.V., Sosnikhina S.P., Tsvetkova N.V., Lovtsus A.V., Kartel N.A. Molecular genetic mapping of the sy1 and sy9 asynaptic genes in rye (Secale cereale L.) using microsatellite and isozyme markers. Russ. J. Genet. 2009;45: 1444-1449. DOI 10.1134/S1022795409120060.
26. Milczarski P., Bolibok-Brągoszewska H., Myśków B., Stojałowski S., Heller-Uszyńska K., Góralska M., Brągoszewski P., Uszyński G., Kilian A., Rakoczy-Trojanowska M. A high density consensus map of rye (Secale cereale L.) based on DArT markers. PLoS One. 2011; 6:e28495. DOI 10.1371/journal.pone.0028495.
27. Milczarski P., Hanek M., Tyrka M., Stojałowski S. The application of GBS markers for extending the dense genetic map of rye (Secale cereale L.) and the localization of the Rfc1 gene restoring male fertility in plants with the C source of sterility-inducing cytoplasm. J. Appl. Genet. 2016;57:439-451. DOI 10.1007/s13353-016-0347-4.
28. Niedziela A., Bednarek P.T., Labudda M., Mańkowski D.R., Anioł A. Genetic mapping of a 7R Al tolerance QTL in triticale (×Triticosecale Wittmack). J. Appl. Genet. 2014;55:1-14. DOI 10.1007/s13353-013-0170-0.
29. Philipp U., Wehling P., Wricke G. A linkage map of rye. Theor. Appl. Genet. 1994;88:243-248. DOI 10.1007/BF00225904.
30. Schlegel R. Hybrid breeding boosted molecular genetics in rye. Russ. J. Genet.: Appl. Res. 2016;6(5):569-583. DOI 10.1134/S2079059716050105.
31. Schlegel R., Korzun V. Notes on the origin of 4BL-5RL rye translocations in common wheat (Triticum aestivum L.). Cereal Res. Commun. 2008;36:373-385. DOI 10.1556/CRC.36.2008.3.2.
32. Schneider A., Molnár-Láng M. Detection of the 1RS chromosome arm in Martonvásár wheat genotypes containing 1BL.1RS or 1AL.1RS translocations using SSR and STS markers. Acta Agron. Hung. 2009;57:409-416. DOI 10.1556/AAgr.57.2009.4.3.
33. Senft P., Wricke G. An extended genetic map of rye (Secale cereale L.). Plant Breed. 1996;115:508-510. DOI 10.1111/j.1439-0523. tb00966.x.
34. Silkova O.G., Dobrovolskaya O.B., Dubovets N.I., Silkova O.G., Adonina I.G., Kravtsova L.A., Röder M.S., Salina E.A., Shchapova A.I., Shumny V.K. Production of wheat-rye substitution lines and identification of chromosome composition of karyotypes using C-banding, GISH, and SSR markers. Russ. J. Genet. 2006;42:645-653. DOI 10.1134/S1022795406060093.
35. Silkova O.G., Leonova I.N., Krasilova N.M., Dubovets N.I. Preferential elimination of chromosome 5R of rye in the progeny of 5R5D dimonosomics. Russ J. Genet. 2011;47:942-950. DOI 10.1134/S1022795411080151.
36. Stam P. Construction of integrated linkage maps by means of a new computer package: Join Map. Plant J. 1993;5:739-744. DOI 10.1046/j.1365-313x.1993.03050739.
37. Tenhola-Roininen T., Tanhuanpää P. Tagging the dwarfing gene Ddw1 in a rye population derived from doubled haploid parents. Euphytica. 2010;172:303-312. DOI 10.1007/s10681-009-9982-8.
38. Tikhenko N., Tsvetkova N., Priyatkina S., Voylokov A., Börner A. Gene mutations in rye causing embryo lethality in hybrids with wheat: allelism and chromosomal localization. Biol. Plant. 2011;55(3): 448- 452. DOI 10.1007/s10535-011-0109-4.
39. Tsvetkova N.V., Tikhenko N.D., Hackauf B., Voylokov A.V. Two rye genes responsible for abnormal development of wheat–rye hybrids are linked in the vicinity of an evolutionary translocation on chromosome 6R. Plants. 2018;7:55. DOI 10.3390/plants7030055.
40. Varshney R.K., Beier U., Khlestkina E.K., Kota R., Korzun V., Graner A., Börner A. Single nucleotide polymorphisms in rye (Secale cereale L.): discovery, frequency, and applications for genome mapping and diversity studies. Theor. Appl. Genet. 2007;114:1105-1116. DOI 10.1007/s00122-007-0504-6.
41. Vyhnánek T., Nevrtalová E., Slezáková K. Detection of the genetic variability of triticale using wheat and Rye SSR markers. Cereal Res. Commun. 2009;37:23-29. DOI 10.1556/CRC.37.2009.1.3.
42. Wang D., Zhuang L., Sun L., Feng Y., Pei Z., Qi Z. Allocation of a powdery mildew resistance locus to the chromosome arm 6RL of Secale cereale L. cv. ‘Jingzhouheimai’. Euphytica. 2010;176:157-166. DOI 10.1007/s10681-010-0199-7.
43. Xu H., Yin D., Li L., Wang Q., Li X., Yang X., Liu W., An D. Development and application of EST-based markers specific for chromosome arms of rye (Secale cereale L.). Cytogenet. Genome Res. 2012; 136:220-228. DOI 10.1159/000336478.
44. Yang S., Zhu H., Yu J., Zhong Y.Y., Zhao L.-B., Jiang Y.-F., Hao M., Zhang L., Ning S., Chen X.J., Liu D., Yuan Z. Using a wheat-rye amphihaploid population to map a rye gene responsible for dwarfness. Euphytica. 2018.214:166. DOI 10.1007/s10681-018-2247-7.
45. Zhang L.Y., Bernard M., Leroy P., Feuillet C., Sourdille P. High transferability of bread wheat EST-derived SSRs to other cereals. Theor. Appl. Genet. 2005;111:677-687. DOI 10.1007/s00122-005-2041-5.