Preview

Vavilov Journal of Genetics and Breeding

Advanced search

The content of yellow pigments in durum wheat (Titicum durum Desf.) grains: biosynthesis, genetic control, marker selection

https://doi.org/10.18699/VJ20.642

Abstract

Grain with high contents of yellow pigments will add the natural bright-yellow colour to the paste, which unlike a paste with a high level of whiteness, are preferred by consumers. The provitamin activity (vitamin A) and antioxidant activity of the carotenoid pigment increase the biological and nutritional value of the grain with high contents of these pigments. The purpose of this review is to summarize modern knowledge about the biosynthesis and genetic control of pigment accumulation in durum wheat and to assess the main results of research and selection over the past 20 years abroad and in Russia. The trait “concentration carotenoid pigment in grain” (Ypc) is quantitative. However, the prevalence of strong additive gene effects and high heritability have contributed to significant progress in breeding for this trait. Molecular labeling of quantitative trait loci (QTL) that control the synthesis of the carotenoid pigment and the yellowness index (YI) found that they are distributed across all chromosomes of the durum wheat genome. The main QTLs, which determine 60 % of the variation of the trait, were mapped to 7AL and 7BL chromosome. The contribution of these QTLs is associated with allelic variations that control the activity of phytoene synthase (PSY). QTLs with minor effects found on the remaining chromosomes are also reliably mapped using molecular markers. As confirmed in a number of experiments, most of them are QTLs located on 3AS (linked to the LCYE (lycopene ε-cyclase) allele and on 4BS (the LpxB1.1c gene). It has been shown that the LpxB1.1c allele contributes to a decrease in the activity of lipoxygenase, which oxidases carotenoids during the production of end products. This review considered and discusses the problems of molecular markers in breeding programs to increase the concentration of pigments in the grain and improve the color characteristics of the paste.

About the Authors

P. N. Malchikov
Samara Federal Research Scientific Center of the Russian Academy of Sciences, Samara Scientific Research Agriculture Institute named after N.M. Tulaikov
Russian Federation

Bezenchuk, Samara region



M. G. Myasnikova
Samara Federal Research Scientific Center of the Russian Academy of Sciences, Samara Scientific Research Agriculture Institute named after N.M. Tulaikov
Russian Federation

Bezenchuk, Samara region



References

1. Vasil’chuk N.S. Spring Durum Wheat Breeding. Saratov, 2001. (in Russian)

2. Vasil’chuk N.S., Gaponov S.N., Eremenko L.V., Parshikova T.M., Popova V.M., Shutareva G.M., Kulikova V.A. Breeding of spring durum wheat for carotenoid-rich grain. In: Collection of Scientific Papers of the South-East Agricultural Research Institute of the Russian Agricultural Academy. Saratov: Rakurs Company, 2009;89-90. (in Russian)

3. Vyushkov A.A. Spring Wheat Breeding in the Middle Volga region. Samara: SamLyuks Company, 2004. (in Russian)

4. Gaponov S.N., Popova V.M., Shutareva G.I., Tsetva N.M., Tsetva I.S., Parshikova T.M. Obtaining new sources for breeding spring durum wheat warrants the raise of stable stress-resistant varieties. Agrarnyy Vestnik Yugo-Vostoka = Agrarian Bulletin of the SouthEast. 2018;3:30-31. (in Russian)

5. Kretovich V.L. Plant Biochemistry. Moscow: Vysshaya shkola, 1986. (in Russian)

6. Malchikov P.N. Spring Durum Wheat Breeding in the Middle Volga Region. Kinel, 2009. (in Russian)

7. Myasnikova M.G., Malchikov P.N., Shabolkina E.N., Anisimkina N.V., Rozova M.A., Chakheeva T.V. The results of durum wheat breeding in Russia for carotenoid pigments content in kernels. Zernovoe Khozjaistvo Rossii = Grain Economy of Russia. 2019;6(66): 37-40. DOI 10.31367/2079-8725-2019-66-6-37-40. (in Russian)

8. Chesnokov Yu.V., Artemyeva A.M. Associative mapping in plants. Selskokhozyaystvennaya Biologiya = Agricultural Biology. 2011; 46(5):3-16. (in Russian)

9. AACC International. AACC International Official Method 14-50.01. In: Approved Methods of the American Association of Cereal Chemists. Tenth ed. (MN, USA: St. Paul), 2013.

10. Al-Babili S., Bouwmeester H.J. Strigolactones, a novel carotenoidderived plant hormone. Annu. Rev. Plant Biol. 2015;66(1):161-186. DOI 10.1146/annurev-arplant-043014-14759.

11. Beecher B.S., Carter A.H., See D.R. Genetic mapping of new seed-expressed polyphenol oxidase genes in wheat (Triticum aestivum L.). Theor. Appl. Genet. 2012;124:1463-1473. DOI 10.1007/s00122-012-1801-2.

12. Blanco A., Colasuonno P., Gadaleta A., Mangini G., Schiavulli A., Simeone R., Digesu A.M., De Vita P., Mastrangelo A.M., Cativelly L. Quantitative trait loci for yellow pigment concentration and individual carotenoid compounds in durum wheat. J. Cereal Sci. 2011; 54(2):255-264. DOI 10.1016/j.jcs.2011.07.002.

13. Borrelli G.M., De Leonardis A.M., Fares C., Platani C., Di Fonzo N. Effects of modifyed processing conditions on oxidative properties of semolina dough and pasta. Cereal Chem. 2003;80:225-231. DOI 10.1094/cchem.2003.80.2.225.

14. Borelli G.M., Troccoli А., Di Fonzo N., Fares C. Durum wheat lipoxygenase activity and other parameters that affect pasta color. Cereal Chem. 1999;76:335-340. DOI 10.1094/CCHEM.1999.76.3.335.

15. Borrelli G.M., Trono D. Molecular approaches to genetically improve the accumulation of health-promoting secondary metabolites in staple crops-A case study: the Lipoxygenase-B1 genes and regulation of the carotenoid content in pasta products. Int. J. Mol. Sci. 2016;17:1177. DOI 10.3390/ijms17071177.

16. Brandolini A., Hidalgo A., Gabriele S., Heun M. Chemical composition of wild and feral diploid wheats and their bearing on domesticated wheats. J. Cereal Sci. 2015;63:122-127. DOI 10.1016/j.jcs.2015.03.005.

17. Brandolini A., Hidalgo A., Moscaritolo S. Chemical composition and pasting properties of einkorn (Triticum monococcum L. subsp. monococcum) whole meal flour. J. Cereal Sci. 2008;47:599-609. DOI 10.1016/j.jcs.2007.07.005.

18. Campos K.M., Royo C., Schulthess A., Villegas D., Matus I., Ammar K., Schwember A.R. Association of phytoene synthase Psy1-A1 and Psy1-B1 allelic variants with semolina yellowness in durum wheat (Triticum turgidum L. var. durum). Euphytica. 2016;207:109- 117. DOI 10.1007/s10681-015-1541-x.

19. Carrera A., Echenique V., Zhang W., Helguera M., Manthey F., Schrager A., Picca A., Cervigna G., Dubcovsky J. A deletion at the Lpx-B1 locus is associated with low lipoxygenase activity and improved pasta color in durum wheat (Triticum turgidum ssp. durum). J. Cereal Sci. 2007;45:67-77. DOI 10.1016/j.jcs.2006.07.001.

20. Cazzonelli C.I., Pogson B.J. Source to sink: regulation of carotenoid biosynthesis in plants. Trends Plant Sci. 2010;15:266-274. DOI 10.1016/j.tplants.2010.02.003.

21. Clarke J.M., Clarke F.R., McCaig T.N. Heritability of content in three durum wheat crosses. In: Proc. Ninth Int. Wheat Genetics Symposium. Saskatoon, 1998;2:182-184.

22. Colasuonno P., Gadaleta A., Giancaspro A., Nigro D., Giove S., Incerti O., Mangini G., Signorile A., Simeone R., Blanco A. Development of a high-density SNP-based linkage map and detection of yellow pigment content QTLs in durum wheat. Mol. Breed. 2014;34:1563- 1578. DOI 10.1007/s11032-014-0183-3.

23. Colasuonno P., Lozito M.L., Marcotuli I., Nigro D., Giancaspro A., Mangini G., De Vita P., Mastrangelo A.M., Pecchioni N., Houston K., Simeone R., Gadaleta A., Blanco A. The carotenoid biosynthetic and catabolic genes in wheat and their association with yellow pigments. BMC Genomics. 2017a;18:122. DOI 10.1186/s12864-016-3395-6.

24. Colasuonno P., Marcotuli I., Blanco A., Maccaferri M., Condorelli G.E., Tuberosa R., Parada R., de Camargo A.C., Schwember A.R., Gadaleta A. Carotenoid pigment content in durum wheat (Triticum turgidum L. var durum): an overview of quantitative trait loci and candidate genes. Front. Plant Sci. 2019;10:1347. DOI 10.3389/fpls.2019.01347.

25. Colasuonno P., Marcotuli I., Lozito M. L., Simeone R., Blanco A., Gadaleta A. Characterization of aldehyde oxidase (AO) genes involved in the accumulation of carotenoid pigments in wheat grain. Front. Plant Sci. 2017b;8:863. DOI 10.3389/fpls.2017.00863.

26. Cong L., Wang C., Li Z., Chen L., Yang G., Wang Y., He G. cDNA cloning and expression analysis of wheat (Triticum aestivum L.) phytoene and ζ-carotene desaturase genes. Mol. Biol. Rep. 2010;37: 3351-3361. DOI 10.1007/s11033-009-9922-7.

27. Crawford A.C., Francki M.G. Chromosomal location of wheat genes of the carotenoid biosynthetic pathway and evidence for a catalase gene on chromosome 7A functionally associated with flour b* colour variation. Mol. Genet. Genomics. 2013;288:483-493. DOI 10.1007/s00438-013-0767-3.

28. De Simone V., Menzo V., De Leonardis A.M., Ficco D.B.M., Trono D., Cattivelli L., De Vita P. Different mechanisms control lipoxygenase activity in durum wheat kernels. J. Cereal Sci. 2010;52:121-128. DOI 10.1016/j.jcs.2010.04.003.

29. Dibari B., Murat F., Chosson A., Gautier V., Poncet C., Lecomte P., Mercier I., Berges H., Pont C., Blanco A., Salse J. Deciphering the genomic structure, function and evolution of carotenogenesis related phytoene synthases in grasses. BMC Genomics. 2012;13:221. DOI 10.1186/1471-2164-13-221.

30. Digesù A.M., Platani C., Cattivelli L., Mangini G., Blanco A. Genetic variability in yellow pigment components in cultivated and wild tetraploid wheats. J. Cereal Sci. 2009;50:210-218. DOI 10.1016/j.jcs.2009.05.002.

31. Dong C.H., Ma Z.Y., Xia X.C., Zhang L.P., He Z.H. Allelic variation at the TaZds-A1 locus on wheat chromosome 2A and development of a functional marker in common wheat. J. Integr. Agric. 2012;11: 1067-1074. DOI 10.1016/S2095-3119(12)60099-9.

32. Dreisigacker S., Sehgal D., Reyes Jaimez A., Luna Garrido B., Muñoz Zavala S., Núñez Ríos C. CIMMYT Wheat Molecular Genetics: Laboratory Protocols and Applications to Wheat Breeding. Mexico: CIMMYT, 2016.

33. Elouafi I., Nachit M.M., Martin L.M. Identification of a microsatellite on chromosome 7B showing a strong linkage with yellow pigment in durum wheat (Triticum turgidum L. var. durum). Hereditas. 2001;135:255-261. DOI 10.1111/j.1601-5223.2001.t01-1-00255.x.

34. Feillet P., Autran J.-C., Icard-Vernière C. Mini review pasta brownness: An assessment. J. Cereal Sci. 2000;32:215-233. DOI 10.1006/jcrs.2000.0326.

35. Ficco D.B.M., Mastrangelo A.M., Trono D., Borrelli G.M., De Vita P., Fares C., Beleggia R., Platani C., Papa R. The colours of durum wheat: a review. Crop Pasture Sci. 2014;65(1):1-15. DOI 10.1071/cp13293.

36. Fiedler J.D., Salsman E., Liu Y., Michalak de Jiménez M., Hegstad J.B., Chen B., Manthey F.A., Chao S., Xu S., Elias M.E., Li X. Genomewide association and prediction of grain and semolina quality traits in durum wheat breeding populations. Plant Genome. 2017;10(3): 1-12. DOI 10.3835/plantgenome2017.05.0038.

37. Fu B.X., Chiremba C., Pozniak C.J., Wang K., Nam S. Total phenolic and yellow pigment contents and antioxidant activities of durum wheat milling fractions. Antioxidants. 2017;6:78. DOI 10.3390/antiox6040078.

38. Geng H., Shi J., Fuerst E.P., Wei J., Morris C.F. Phisical mapping of peroxidase genes and development of functional markers for TaPod-D1 on bread wheat chromosome 7D. Front. Plant Sci. 2019;10:523. DOI 10.3389/fpls.2019.00523.

39. He X.Y., He Z.H., Morris C.F., Xia X.C. Cloning and phylogenetic analysis of polyphenol oxidase genes in common wheat and related species. Genet. Resour. Crop Evol. 2009;56:311. DOI 10.1007/s10722-008-9365-3.

40. He X.Y., Zhang Y.L., He Z.H., Wu Y.P., Xiao Y.G., Ma C.X., Xia X.C. Characterization of phytoene synthase 1 gene (Psy1) located on common wheat chromosome 7A and development of a functional marker. Theor. Appl. Genet. 2008;116:213-221. DOI 10.1007/s00122-007-0660-8.

41. Hessler T.G., Thomson M.J., Benscher D., Nachit M.M., Sorrells M.E. Association of a lipoxygenase locus, Lpx-B1, with variation in lipoxygenase activity in durum wheat seeds. Crop Sci. 2002;42(5): 1695-1700. DOI 10.2135/cropsci2002.1695.

42. Howitt C.A., Cavanagh C.R., Bowerman A.F., Cazzonelli C., Rampling L., Mimica J.L., Pogson B.J. Alternative splicing, activation of cryptic exons and amino acid substitutions in carotenoid biosynthetic genes are associated with lutein accumulation in wheat endosperm. Funct. Integr. Genomics. 2009;9(3):363-376. DOI 10.1007/s10142-009-0121-3ICC.

43. ICC Method 152, in Standard Methods of the International Association for Cereal Science and Technology. Detmold, Germany: Verlag Moritz Schäfer ICC, 1990. Jimenez M., Dubcovsky J. Chromosome location of genes affecting polyphenol oxidase activity in seeds of common and durum wheat. Plant Breed. 1999;118:395-398. DOI 10.1046/j.1439-0523.1999.00393.x.

44. Kabbaj H., Sall A.T., Al-Abdallat A., Geleta M., Amri A., Filali-Maltouf A., Belkadi B., Ortiz R., Bassi F.M. Genetic diversity within a Global panel of durum wheat (Triticum durum) landraces and modern germplasm reveals the history of alleles exchange. Front. Plant Sci. 2017;8:1277. DOI 10.3389/fpls.2017.01277.

45. Ke Q., Kang L., Kim H.S., Xie T., Liu C., Ji C.Y., Kim H.S., Park W.S., Ahn M.J., Wang S., Li H., Deng X., Kwak S.S. Down-regulation of lycopene ε-cyclase expression in transgenic sweetpotato plants increases the carotenoid content and tolerance to abiotic stress. Plant Sci. 2019;281:52-60. DOI 10.1016/j.plantsci.2019.01.002.

46. Kean E.G., Bordenave N., Ejeta G., Hamaker B.R., Ferruzzi M.G. Carotenoid bioaccessibility from whole grain and decorticated yellow endosperm sorghum porridge. J. Cereal Sci. 2011;54:450-459. DOI 10.1016/j.jcs.2011.08.010.

47. Liu C.J., Chao S., Gale M.D. The genetical control of tissue-specific peroxidases, Per-1, Per-2, Per-3, Per-4, and Per-5 in wheat. Theor. Appl. Genet. 1990;79(3):305-313. DOI 10.1007/bf01186072.

48. Maccaferri M., Sanguineti M.C., Demontis A., El-Ahmed A., Garcia del Moral L., Maalouf F., Nachit M., Nserallah N., Ouabbou H., Rhouma S. Association mapping in durum wheat grown across a broad range of water regimes. J. Exp. Bot. 2011;62(2):409-438. DOI 10.1093/jxb/erq287.

49. Mazzeo M.F., Di Stasio L., D’Ambrosio C., Arena S., Scaloni A., Corneti S., Ceriotti A., Tuberosa R., Siciliano R.A., Picariello G., Mamone G. Identification of early represented gluten proteins during durum wheat grain development. J. Agric. Food Chem. 2017; 65(15):3242-3250. DOI 10.1021/acs.jafc.7b00571.

50. N’Diaye A., Haile J.K., Cory A.T., Clarke F.R., Clarke J.M., Knox R.E., Pozniak C.J. Single marker and haplotype-based association analysis of semolina and pasta colour in elite durum wheat breeding lines using a high-density consensus map. PloS One. 2017;12(1): e0170941. DOI 10.1371/journal.pone.0170941.

51. N’Diaye A., Haile J.K., Nilsen K.T., Walkowiak S., Ruan Y., Singh A.K., Clarke F.R., Clarke J.M., Pozniak C.J. Haplotype loci under selection in Canadian durum wheat germplasm over 60 years of breeding: Association with grain yield, quality traits, protein loss, and plant height. Front. Plant Sci. 2018;9(1589):1-19. DOI 10.3389/fpls.2018.01589.

52. Nisar N., Li L., Lu S., Khin N.C., Pogson B.J. Carotenoid metabolism in plants. Mol. Plant. 2015;8:68-82. DOI 10.1016/j.molp.2014.12.007.

53. Parker G.D., Chalmers K.J., Rathjen A.J., Langridge P. Mapping loci associated with flour colour in wheat (Triticum aestivum L.). Theor. Appl. Genet. 1998;97(1-2):238-245. DOI 10.1007/s001220050891.

54. Patil R.M., Oak M., Deshpande A., Tamhankar S. Development of a robust marker for Psy-1 homoeologs and its application in improvement of yellow pigment content in durum wheat. Mol. Breed. 2018; 38;136. DOI 10.1007/s11032-018-0895-x.

55. Patil R., Oak M., Tamhankar S., Sourdille P., Rao V. Mapping and validation of a major QTL for yellow pigment content on 7AL in durum wheat (Triticum turgidum L. ssp. durum). Mol. Breed. 2008; 21(4):485-496. DOI 10.1007/s11032-007-9147-1.

56. Pozniak C.J., Clarke J.M., Clarke F.R. Potential for detection of marker-trait associations in durum wheat using unbalanced, historical phenotypic datasets. Mol. Breed. 2012;30:1537-1550. DOI 10.1007/s11032-012-9737-4.

57. Pozniak C.J., Knox R.E., Clarke F.R., Clark J.M. Identification of QTL and association of a phytoene synthase gene with endosperm colour in durum wheat. Theor. Appl. Genet. 2007;114:525-537. DOI 10.1007/s00122-006-0453-5.

58. Qin X., Zhang W., Dubcovsky J., Tian L. Cloning and comparative analysis of carotenoid beta-hydroxylase genes provides new insights into carotenoid metabolism in tetraploid (Triticum turgidum ssp. durum) and hexaploid (Triticum aestivum) wheat grains. Plant Mol. Biol. 2012;80:631-646. DOI 10.1007/s11103-012-9972-4.

59. Randhawa H.S., Asif M., Pozniak C., Clarke J.M., Graf R.J., Fox S.L., Humphaeys D.G., Knox R.E., DePaw R.M., Singh A.K., Cuthbert R.D., Hucl P., Spaner D. Application of molecular markers to wheat breeding in Canada. Plant Breed. 2013;132:458-471. DOI 10.1111/pbr.12057.

60. Ravel C., Dardevet M., Leenhardt F., Bordes J., Joseph J.L., Perretant M.R., Exbrayat F., Poncet C., Balfourier F., Chanliaud E., Charmet G. Improving the yellow pigment content of bred wheat flour by selecting the three homeologous copies of Psy1. Mol. Breed. 2013;31:87-89. DOI 10.1007/S11032-012-9772-1.

61. Rodriguez-Concepcion M., Avalos J., Bonet M.L., Boronat A., Gomez-Gomez L., Hornero-Mendez D., Limon M.C., Melendez-Martinez A.J., Olmedilla-Alonso B., Palou A., Ribot J., Rodrigo M.J., Zacarias L., Zhu C. A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Prog. Lipid Res. 2018;70:62-93. DOI 10.1016/j.plipres.2018.04.004.

62. Roncallo P.F., Cervigni G.L., Jensen C., Miranda R., Carrera A.D., Helguera M., Echenique V. QTL analysis of main and epistatic effects for flour color traits in durum wheat. Euphytica. 2012;185:77-92. DOI 10.1007/s10681-012-0628-x.

63. Roncallo P., Echenique V. Identification of molecular markers associated with yield and quality traits for Argentinean durum wheat breeding programs. In: Options Méditerranéennes. Proceedings of the International Symposium on Genetics and Breeding of Durum Wheat. Rome, Italy: CHEAM, 2014;577-582.

64. Schulthess A., Schwember A.R. Improving durum wheat (Triticum turgidum L. var. durum) grain yellow pigment content through plant breeding. Сienc. Invest. Agr. 2013;40:475-490. http://dx.doi.org/10.7764/rcia.v40i3.1157.

65. Sehgal D., Dreisigacker S. Haplotypes-based genetic analysis: benefits and challenges. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2019;23(7):803-808. DOI 10.18699/VJ19.37.

66. Simeone R., Pasqualone A., Clodoveo M., Blanco A. Genetic mapping of polyphenol oxidase in tetraploid wheat. Cell. Mol. Biol. Lett. 2002;7:763-769.

67. Si H., Ma C., Wang X., He X. Variability of polyphenol oxidase (PPO) alleles located on chromosomes 2A and 2D can change the wheat kernel PPO activity. Aust. J. Crop Sci. 2012;6(3):444-449.

68. Singh A., Reimer S., Pozniak C.J., Clarke F.R., Clarke J.M., Knox R.E., Singh A.K. Allelic variation at Psy1-A1 and association with yellow pigment in durum wheat grain. Theor. Appl. Genet. 2009;118:1539- 1548. DOI 10.1007/s00122-009-1001-x.

69. Sissons M. Role of durum wheat composition on the quality of pasta and bread. Food Global Sci. 2008;2:75-90.

70. Sun T., Yuan H., Cao H., Yazdani M., Tadmor Y., Li L. Carotenoid metabolism in plants: The role of plastids. Mol. Plant. 2018;11:58-74. DOI 10.1016/j.molp.2017.09.010.

71. Taranto F., Delvecchio L.N., Mangini G., Del Faro L., Blanco A., Pasqualone A. Molecular and physico-chemical evaluation of enzymatic browning of whole meal and dough in a collection of tetraploid wheats. J. Cereal Sci. 2012;55:405-414. DOI 10.1016/j.jcs.2012.02.005.

72. Taranto F., Mangini G., Pasqualone A., Gadaleta A., Blanco A. Mapping and allelic variations of Ppo-B1 and Ppo-B2 gene-related polyphenol oxidase activity in durum wheat. Mol. Breed. 2015;35:80. DOI 10.1007/s11032-015-0272-y.

73. Vargas V.H., Schulthess A., Royo C., Matus I., Schwember A.R. Transcripts levels of Phytoene synthase 1 (Psy-1) are associated to semolina yellowness variation in durum wheat (Triticum turgidum L. ssp. durum). J. Cereal Sci. 2016;68:155-163. DOI 10.1016/j.jcs.2016.01.011.

74. Verlotta A., De Simone V., Mastrangelo A.M., Cattivelli L., Papa R., Trono D. Insight into durum wheat Lpx-B1: a small gene family coding for the lipoxygenase responsible for carotenoid bleaching in mature grains. BMC Plant Biol. 2010;10:263. DOI 10.1186/1471-2229-10-263.

75. Wang S., Wong D., Forrest K., Allen A., Chao S., Huang B.E., Maccaferri M., Salvi S., Milner S.S., Cattivelli L., Mastrangello A.M., Whan A., Stephan S., Sarker G., Wieseke R., Plieske S. Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol. J. 2014;12:787-796. DOI 10.1111/pbi.12183.

76. Watanabe N., Akond A.S.M.G.M., Nachit M.M. Genetic mapping of the gene affecting polyphenol oxidase activity in tetraploid durum wheat. J. Appl. Genet. 2006;47:201-205. DOI 10.1007/BF03194624.

77. Watanabe N., Takeuchi A., Nakayama A. Inheritance and chromosomal location of the homoeologous genes affecting phenol colour reaction of kernels in durum wheat. Euphytica. 2004;139:87-93. DOI 10.1007/s10681-004-2255-7.

78. Wei J., Geng H., Zhang Y., Liu J., Wen W., Zhang Y., Xia X., Chen X., He Z. Mapping quantitative trait loci for peroxidase activity and developing gene-specific markers for TaPod-A1 on wheat chromosome 3AL. Theor. Appl. Genet. 2015;128:2067-2076. DOI 10.1007/s00122-015-2567-0.

79. Zeng J., Wang X., Miao Y., Wang C., Zang M., Chen X., Li M., Li X., Wang O., Li K., Chang J., Wang G., Yang G., He G. Metabolic engineering of wheat provitamin A by simultaneously overexpressing CrtB and silencing carotenoid hydroxylase (TaHYD). J. Agric. Food Chem. 2015;63:9083-9092. DOI 10.1021/acs.jafc.5b04279.

80. Zhang W., Dubcovsky J. Association between allelic variation at the Phytoene synthase 1 gene and yellow pigment content in the wheat grain. Theor. Appl. Genet. 2008;116:635-645. DOI 10.1007/s00122-007-0697-8.

81. Zhang Y., Wu Y., Xiao Y., He Z., Zhang Y., Yan J., Zhang Y., Xia X., Ma C. QTL mapping for flour and noodle colour components and yellow pigment content in common wheat. Euphytica. 2009;165(3): 435-444. DOI 10.1007/s10681-008-9744-z.


Review

Views: 918


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)