Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Migration of primordial germline cells is negatively regulated by surrounding somatic cells during early embryogenesis in Drosophila melanogaster

https://doi.org/10.18699/VJ20.644

Abstract

Cell migration is an important morphogenetic process necessary at different stages of individual development and body functioning. The initiation and maintenance of the cell movement state requires the activation of many factors involved in the regulation of transcription, signal transduction, adhesive interactions, modulation of membranes and the cytoskeleton. However, cell movement depends on the status of both migrating and surrounding cells, interacting with each other during movement. The surrounding cells or cell matrix not only form a substrate for movement, but can also participate in the spatio-temporal regulation of the migration. At present, there is no exact understanding of the genetic mechanisms of this regulation. To determine the role of the cell environment in the regulation of individual cell migration, we studied the migration of primordial germline cells (PGC) during early embryogenesis in Drosophila melanogaster. Normally, PGC are formed at the 3rd stage of embryogenesis at the posterior pole of the embryo. During gastrulation (stages 6–7), PGC as a consolidated cell group passively transfers into the midgut primordium. Further, PGC are individualized, acquire an amoeboid form, and actively move through the midgut epithelium and migrate to the 5–6 abdominal segment of the embryo, where they form paired embryonic gonads. We screened for genes expressed in the epithelium surrounding PGC during early embryogenesis and affecting their migration. We identified the myc, Hph, stat92E, Tre-1, and hop genes, whose RNA interference leads to premature active PGC migration at stages 4–7 of embryogenesis. These genes can be divided into two groups: 1) modulators of JAK/STAT pathway activity inducing PGC migration (stat92E, Tre-1, hop), and 2) myc and Hph involved in epithelial morphogenesis and polarization, i.e. modifying the permeability of the epithelial barrier. Since a depletion of each of these gene products resulted in premature PGC migration, we can conclude that, normally, the somatic environment negatively regulates PGC migration during early Drosophila embryogenesis.

About the Authors

N. V. Dorogova
Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
Russian Federation
Novosibirsk


A. S. Khruscheva
Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
Russian Federation
Novosibirsk


Iu. A. Galimova
Institute of Molecular and Cellular Biology of Siberian Branch of the Russian Academy of Sciences
Russian Federation
Novosibirsk


D. Yu. Oshchepkov
Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
Russian Federation
Novosibirsk


D. E. Maslov
Novosibirsk State University
Russian Federation
Novosibirsk


E. D. Shvedkina
Novosibirsk State University
Russian Federation
Novosibirsk


K. A. Akhmetova
Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences; University of Alabama at Birmingham, Department of Biochemistry and Molecular Genetics, School of Medicine
Russian Federation

Novosibirsk; Birmingham, Alabama



S. A. Fedorova
Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
Russian Federation
Novosibirsk


References

1. Aman A., Piotrowski T. Cell migration during morphogenesis. Dev. Biol. 2010;341(1):20-33. DOI 10.1016/j.ydbio.

2. Bae Y.K., Macabenta F., Curtis H.L., Stathopoulos A. Comparative analysis of gene expression profiles for several migrating cell types identifies cell migration regulators. Mech. Dev. 2017;148:40-55. DOI 10.1016/j.mod.2017.04.004.

3. Barros-Becker F., Lam P.Y., Fisher R., Huttenlocher A. Live imaging reveals distinct modes of neutrophil and macrophage migration within interstitial tissues. J. Cell Sci. 2017;130(22):3801-3808. DOI 10.1242/jcs.206128.

4. Dansereau D.A., Lasko P. The development of germline stem cells in Drosophila. Methods Mol. Biol. 2008;450:3-26. DOI 10.1007/978-1-60327-214-8_1.

5. Devreotes P., Horwitz A.R. Signaling networks that regulate cell migration. Cold Spring Harb. Perspect. Biol. 2015;7(8):a005959. DOI 10.1101/cshperspect.a005959.

6. Dorogova N.V., Fedorova E.V., Bolobolova E.U., Ogienko A.A., Baricheva E.M. GAGA protein is essential for male germ cell development in Drosophila. Genesis. 2014;52(8):738-751. DOI 10.1002/dvg.22789.

7. Dorogova N.V., Fedorova E.V., Ogienko A.A., Baricheva E.M., Khrushcheva A.S. Role of GAGA factor in Drosophila primordial germ cell migration and gonad development. Russ. J. Dev. Biol. 2016; 47(1):33-40. DOI 10.1134/S1062360416010033.

8. Doronkin S., Djagaeva I., Nagle M.E., Reiter L.T., Seagroves T.N. Dose-dependent modulation of HIF-1alpha/sima controls the rate of cell migration and invasion in Drosophila ovary border cells. Oncogene. 2010;29(8):1123-1134. DOI 10.1038/onc.2009.407.

9. Josten F., Fuss B., Feix M., Meissner T., Hoch M. Cooperation of JAK/ STAT and Notch signaling in the Drosophila foregut. Dev. Biol. 2004;267(1):181-189. DOI 10.1016/j.ydbio.2003.11.016.

10. Kunwar P.S., Sano H., Renault A.D., Barbosa V., Fuse N., Lehmann R. Tre1 GPCR initiates germ cell transepithelial migration by regulating Drosophila melanogaster E-cadherin. J. Cell Biol. 2008;183(1): 157-168. DOI 10.1083/jcb.200807049.

11. Kunwar P.S., Starz-Gaiano M., Bainton R.J., Heberlein U., Lehmann R. Tre1, a G protein-coupled receptor, directs transepithelial migration of Drosophila germ cells. PLoS Biol. 2003;1(3):E80. DOI 10.1371/journal.pbio.0000080.

12. Li J., Xia F., Li W.X. Coactivation of STAT and Ras is required for germ cell proliferation and invasive migration in Drosophila. Dev. Cell. 2003;5(5):787-798. DOI 10.1016/s1534-5807(03)00328-9.

13. Ma X., Huang J., Tian Y., Chen Y., Yang Y., Zhang X., Zhang F., Xue L. Myc suppresses tumor invasion and cell migration by inhibiting JNK signaling. Oncogene. 2017;36:3159-3167. DOI 10.1038/onc.2016.463.

14. Omelina E.S., Baricheva E.M., Oshchepkov D.Y., Merkulova T.I. Analysis and recognition of the GAGA transcription factor binding sites in Drosophila genes. Comput. Biol. Chem. 2011;35:363-370. DOI 10.1016/j.compbiolchem.2011.10.008.

15. Ratheesh A., Belyaeva V., Siekhaus D.E. Drosophila immune cell migration and adhesion during embryonic development and larval immune responses. Curr. Opin. Cell Biol. 2015;36:71-79. DOI 10.1016/j.ceb.2015.07.003.

16. Reig G., Pulgar E., Concha M.L. Cell migration: from tissue culture to embryos. Development. 2014;141(10):1999-2013. DOI 10.1242/dev.101451.

17. Richardson B.E., Lehmann R. Mechanisms guiding primordial germ cell migration: strategies from different organisms. Nat. Rev. Mol. Cell Biol. 2010;11(1):37-49. DOI 10.1038/nrm2815.

18. Schumacher L. Collective cell migration in development. Adv. Exp. Med. Biol. 2019;1146:105-116. DOI 10.1007/978-3-030-17593-1_7.

19. Shapouri-Moghaddam A., Mohammadian S., Vazini H., Taghadosi M., Esmaeili S.-A., Mardani F., Seifi B., Mohammadi A., Afshari J.T., Sahebkar A. Macrophage plasticity, polarization, and function in health and disease. J. Cell Physiol. 2018;233(9):6425-6440. DOI 10.1002/jcp.26429.

20. Sheng X.R., Posenau T., Gumulak-Smith J.J., Matunis E., Van Doren M., Wawersik M. Jak-STAT regulation of male germline stem cell establishment during Drosophila embryogenesis. Dev. Biol. 2009;334(2):335-344. DOI 10.1016/j.ydbio.2009.07.031.

21. Silver D.L., Geisbrecht E.R., Montell D.J. Requirement for JAK/STAT signaling throughout border cell migration in Drosophila. Development. 2005;132(15):3483-3492. DOI 10.1242/dev.01910.

22. van Steensel B., Delrow J., Bussemaker H.J. Genomewide analysis of Drosophila GAGA factor target genes reveals context-dependent DNA binding. Proc. Natl. Acad. Sci. USA. 2003;100(5):2580-2585. DOI 10.1073/pnas.0438000100.


Review

Views: 2888


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)