Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Effects of a high-fat diet on the lipid profile of oocytes in mice

https://doi.org/10.18699/VJ20.645

Abstract

There are evidences that obese women exhibit a detrimental oocyte quality. However, it remains unclear how this change is associated with obesity, indirectly – or directly through a change in the content and/or composition of lipids in oocytes. The aim of this work was to study effects of a high-fat diet applied to female donor mice on the amount and qualitative composition of lipids of immature and in vivo matured oocytes. A high-fat diet caused larger body weight in female mice compared with the control (p < 0.001; 44.77±1.46 and 35.22±1.57, respectively), and increased the blood levels of cholesterol (p < 0.05; 2.06±0.10 and 1.78±0.10, respectively) and triglycerides (p < 0.05; 2.13±0.23 and 1.49±0.21, respectively). At the same time, this diet does not affect the level of unsaturation of lipids in immature (0.207±0.004 in the experiment and 0.206±0.002 in the control) and matured oocytes (0.212±0.005 in the experiment and 0.211±0.003 in the control). Total lipid content increased during in vivo maturation of mouse oocytes. The amount of lipids was greater in mature oocytes in the experimental group compared to the control (p < 0.01; 8.15±0.37 and 5.83±0.14, respectively). An increase in intracellular lipid amount during oocyte maturation was revealed both after a standard diet (p < 0.05; 4.72±0.48 and 5.83±0.14, respectively) and after a fat-rich diet (p < 0.001; 3.45±0.62 and 8.15±0.37, respectively). Thus, during in vivo oocyte maturation in mice the content of intracellular lipids enhanced, the high-fat diet aggravated this dynamics of lipid increase during in vivo maturation of oocytes.

About the Authors

E. Yu. Brusentsev
Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
Russian Federation
Novosibirsk


E. A. Chuyko
Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Russian Federation
Novosibirsk


K. A. Okotrub
Institute of Automation and Electrometry of Siberian Branch of the Russian Academy of Sciences
Russian Federation
Novosibirsk


T. N. Igonina
Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
Russian Federation
Novosibirsk


I. N. Rozhkova
Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
Russian Federation
Novosibirsk


D. S. Ragaeva
Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
Russian Federation
Novosibirsk


S. V. Ranneva
Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Russian Federation
Novosibirsk


V. A. Naprimerov
Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences; Novosibirsk State Agrarian University
Russian Federation
Novosibirsk


S. Ya. Amstislavsky
Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Russian Federation
Novosibirsk


References

1. Brusentsev E.Yu., Mokrousova V.I., Igonina T.N., Rozhkova I.N., Amstislavsky S.Ya. Role of lipid droplets in the development of oocytes and preimplantation embryos in mammals. Rus. J. Devel. Biol. 2019;50(5):230-237. https://doi.org/10.1134/S1062360419050102.

2. Amstislavsky S., Mokrousova V., Brusentsev E., Okotrub K., Comizzoli P. Influence of cellular lipids on cryopreservation of mammalian oocytes and preimplantation embryos: a review. Biopreserv. Biobank. 2019;17(1):76-83. DOI 10.1089/bio.2018.0039.

3. Bradley J., Pope I., Masia F., Sanusi R., Langbein W., Swann K., Borri P. Quantitative imaging of lipids in live mouse oocytes and early embryos using CARS microscopy. Development. 2016;143(12): 2238-2247. DOI 10.1242/dev.129908.

4. Bradley J., Swann K. Mitochondria and lipid metabolism in mammalian oocytes and early embryos. Int. J. Dev. Biol. 2019;63:93-103. DOI 10.1387/ijdb.180355ks.

5. Brinster R.L. Measuring embryonic enzyme activity. In: Daniel J.C. Jr. (Ed.). Method in Mammalian Embryology. San Francisco: Freeman, 1971;215-227.

6. Collado M., da Silveira J.C., Sangalli J.R., Andrade G.M., Sousa L.R.D.S., Silva L.A., Meirelles F.V., Perecin F. Fatty acid binding protein 3 and transzonal projections are involved in lipid accumulation during in vitro maturation of bovine oocytes. Sci. Rep. 2017;7(1):2645. DOI 10.1038/s41598-017-02467-9.

7. Dickey R.P., Xiong X., Gee R.E., Pridjian G. Effect of maternal height and weight on risk of preterm birth in singleton and twin births resulting from in vitro fertilization: a retrospective cohort study using the Society for Assisted Reproductive Technology Clinic Outcome Reporting System. Fertil. Steril. 2012;97(2):349-354. DOI 10.1016/j.fertnstert.2011.11.017.

8. Dunning K.R., Russell D.L., Robker R.L. Lipids and oocyte developmental competence: the role of fatty acids and β-oxidation. Reproduction. 2014;148(1):15-27. DOI 10.1530/REP-13-0251.

9. Ellenrieder L., Opalinski L., Becker L., Kruger V., Mirus O., Straub S.P., Ebell K., Flinner N., Stiller S.B., Guiard B., Meisinger C., Wiedemann N., Schleiff E., Wagner R., Pfanner N., Becker T. Separating mitochondrial protein assembly and endoplasmic reticulum tethering by selective coupling of Mdm10. Nat. Commun. 2016;7:13021. DOI 10.1038/ncomms13021.

10. Genicot G., Leroy J.L.M.R., Van Soom A., Donnay I. The use of a fluorescent dye, Nile red, to evaluate the lipid content of single mammalian oocytes. Theriogenology. 2005;63(4):1181-1194. DOI 10.1016/j.theriogenology.2004.06.006.

11. Hillier S.G., Siddiquey A.K., Winston R.M. Fertilization in vitro of cumulus-enclosed mouse oocytes: effect of timing of the ovulatory hCG injection. Int. J. Fertil. 1985;30(2):34-38.

12. Hogan B., Beddington R., Costantini F., Lacy E. Manipulating the Mouse Embryo. A Laboratory Manual. 2nd ed. New York: Cold Spring Harbor Laboratory, Cold Spring Harbor, 1994.

13. Kruip T.A., Cran D.G., Van Beneden T.H., Dieleman S.J. Structural changes in bovine oocytes during final maturation in vivo. Mol. Reprod. Dev. 1983;8(1):29-47. DOI 10.1002/mrd.1120080105.

14. Li J., Wang S., Wang B., Wei H., Liu X., Hao J., Duan Y., Hua J., Zheng X., Feng X., Yan X. High-fat-diet impaired mitochondrial function of cumulus cells but improved the efficiency of parthenogenetic embryonic quality in mice. Anim. Cells Syst. (Seoul). 2018; 22(4):243-252. DOI 10.1080/19768354.2018.1497707.

15. Ma W., Yang X., Liang X. Obesity does not aggravate vitrification injury in mouse embryos: a prospective study. Reprod. Biol. Endocrinol. 2012;10:68. DOI 10.1186/1477-7827-10-68.

16. Minge C.E., Bennett B.D., Norman R.J., Robker R.L. Peroxisome proliferator-activated receptor-gamma agonist rosiglitazone reverses the adverse effects of diet-induced obesity on oocyte quality. Endocrinology. 2008;149(5):2646-2656. DOI 10.1210/en.2007-1570.

17. Okotrub K.A., Amstislavsky S.Y., Surovtsev N.V. Raman spectroscopy reveals the lipid phase transition in preimplantation mouse embryos during freezing. Arch. Biochem. Biophys. 2017;635:37-43. DOI 10.1016/j.abb.2017.10.001.

18. Pantasri T., Wu L.L., Hull M.L., Sullivan T.R., Barry M., Norman R.J., Robker R.L. Distinct localisation of lipids in the ovarian follicular environment. Reprod. Fertil. Dev. 2015;27(4):593-601. DOI 10.1071/RD14321.

19. Robker R.L. Evidence that obesity alters the quality of oocytes and embryos. Pathophysiology. 2008;15(2):115-121. DOI 10.1016/j.pathophys.2008.04.004.

20. Romek M., Gajda B., Krzysztofowicz E., Kepczynski M., Smorag Z. New technique to quantify the lipid composition of lipid droplets in porcine oocytes and pre-implantation embryos using Nile Red fluorescent probe. Theriogenology. 2011;75(1):42-54. DOI 10.1016/j.theriogenology.2010.06.040.

21. Souter I., Baltagi L.M., Kuleta D., Meeker J.D., Petrozza J.C. Women, weight, and fertility: the effect of body mass index on the outcome of superovulation/intrauterine insemination cycles. Fertil. Steril. 2011; 95(3):1042-1047. DOI 10.1016/j.fertnstert.2010.11.062.

22. Thiam A.R., Farese R.V. Jr., Walther T.C. The biophysics and cell biology of lipid droplets. Nat. Rev. Mol. Cell Biol. 2013;14(12):775. DOI 10.1038/nrm3699.

23. Valckx S.D., Arias-Alvarez M., De Pauw I., Fievez V., Vlaeminck B., Fransen E., Bols P.E., Leroy J.L. Fatty acid composition of the follicular fluid of normal weight, overweight and obese women undergoing assisted reproductive treatment: a descriptive cross-sectional study. Reprod. Biol. Endocrinol. 2014;12:13. DOI 10.1186/1477-7827-12-13.

24. Walther T.C., Farese R.V. The life of lipid droplets. Biochim. Biophys. Acta. 2009;1791(6):459-466. DOI 10.1016/j.bbalip.2008.10.009.

25. Welte M.A., Gould A.P. Lipid droplet functions beyond energy storage. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2017;1862(10): 1260-1272. DOI 10.1016/j.bbalip.2017.07.006.

26. Wu L.L., Dunning K.R., Yang X., Russell D.L., Lane M., Norman R.J., Robker R.L. High-fat diet causes lipotoxicity responses in cumulusoocyte complexes and decreased fertilization rates. Endocrinology. 2010;151(11):5438-5445. DOI 10.1210/en.2010-0551.

27. Zeron Y., Sklan D., Arav A. Effect of polyunsaturated fatty acid supplementation on biophysical parameters and chilling sensitivity of ewe oocytes. Mol. Reprod. Dev. 2002;61:271-278. DOI 10.1002/mrd.1156.


Review

Views: 898


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)