Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Молекулярные маркеры в генетическом анализе скрещиваемости мягкой пшеницы с рожью

https://doi.org/10.18699/VJ20.649

Полный текст:

Аннотация

Мягкая пшеница (Triticum aestivum L.), сорта которой широко используются в мировом производстве зерна, плохо скрещивается с видами других родов Triticeae Dum., что ограничивает возможности введения чужеродного генетического материала в ее генофонд и создания новых сортов, хорошо адаптированных к различным неблагоприятным абиотическим и биотическим факторам внешней среды. Известно, что скрещиваемость мягкой пшеницы с представителями других родов контролируется генами Kr1–Kr4 (Crossability with Rye, Hordeum and Aegilops spp.) и геном SKr (Suppressor of crossability). Из названных генов наиболее сильное влияние на признак оказывают SKr и Kr1. В рецессивном состоянии, когда гены не функционируют, может завязываться более 50 % зерновок от числа цветков в колосе при опылении пыльцой чужеродного вида. Оба гена локализованы в хромосоме 5B. Расположение гена SKr в коротком плече хромосомы 5B ограничено маркерами GBR0233 и Xgwm234 в тесном сцеплении с маркерами Xcfb341, TGlc2 и gene12. Ген Kr1 расположен в длинном плече хромосомы 5B, проксимальнее гена Ph1, между EST-SSRмаркерами Xw5145 и Xw9340. Маркеры, разработанные для гена SKr, применяли для контроля переноса его рецессивного аллеля skr в другие генотипы мягкой пшеницы, что позволило получать формы с высокой завязываемостью гибридных зерновок при скрещивании с рожью. Однако в целом использование маркеров генов SKr и Kr1 в практической маркер-ориентированной селекции и молекулярном скрининге образцов ex situ коллекций изучено недостаточно. Большие перспективы в этом плане открывает определение полной нуклеотидной последовательности гена Kr1 у контрастных по скрещиваемости сортов мягкой пшеницы, это дает возможность создания внутригенных аллель-специфичных маркеров. В представленном обзоре рассмотрены генетические ресурсы, созданные посредством гибридизации мягкой пшеницы с рожью; вопросы географического распространения легко скрещивающихся форм пшеницы и генетического контроля совместимости пшеницы и ржи; достижения в использовании молекулярных маркеров в картировании Kr-генов и контроле их передачи.

Об авторах

И. В. Поротников
Федеральный исследовательский центр Всероссийский институт генетических ресурсов растений им. Н.И. Вавилова (ВИР)
Россия
Санкт-Петербург


О. Ю. Антонова
Федеральный исследовательский центр Всероссийский институт генетических ресурсов растений им. Н.И. Вавилова (ВИР)
Россия
Санкт-Петербург


О. П. Митрофанова
Федеральный исследовательский центр Всероссийский институт генетических ресурсов растений им. Н.И. Вавилова (ВИР)
Россия
Санкт-Петербург


Список литературы

1. Писарев В.Е. Амфидиплоиды «яровая пшеница ×яровая рожь». Тр. по прикл. бот., ген. и селекции. 1960;32(2):37-55. [Pisarev V.E. Amphidiploids “spring wheat×spring rye”. Trudy po Prikladnoy Botanike, Genetike i Selektsii = Proceedings on Applied Botany, Genetics, and Breeding. 1960;32(2):37-55. (in Russian)]

2. Рехметулин Р.М. Скрещиваемость аргентинских сортов яровой мягкой пшеницы с диплоидной и тетраплоидной рожью. Сб. науч. тр. по прикл. бот., ген. и селекции. 1987;111:77-81. [Rekhmetulin R.M. Crossability in Argentine spring soft wheat varieties with diploid and tetraploid rye. Bulletin of Applied Botany, Genetics, and Plant Breeding. 1987;111:77-81. (in Russian)]

3. Рехметулин Р.М. Использование форм мягкой пшеницы АМ 808 и МА 808 в скрещивании с рожью. Докл. ВАСХНИЛ. 1988;9:7-10. [Rekhmetulin R.M. Use of soft wheat forms AM 808 and MA 808 in crosses with rye. Doklady VASKhNIL = Reports of the Academy of Agricultural Sciences. 1988;9:7-10. (in Russian)]

4. Ригин Б.В. Скрещивание разнохромосомных групп пшеницы и Triticale с рожью. Сб. тр. аспирантов и молодых научных сотрудников. Ленинград, 1965;6(10)27-35. [Rigin B.V. Crossing of different chromosome groups of wheat and Triticale to rye. Collection of Papers of Postgraduates and Young Scientists. Leningrad, 1965;6(10)27-35. (in Russian)]

5. Ригин Б.В. Скрещиваемость пшеницы с рожью. Тр. по прикл. бот., ген. и селекции. 1976;58(1):12-34. [Rigin B.V. Crossability of wheat with rye. Trudy po Prikladnoy Botanike, Genetike i Selektsii = Proceedings on Applied Botany, Genetics, and Breeding. 1976;58(1):12-34. (in Russian)]

6. Суриков И.М., Киссель Н.И. Наследование хорошей скрещиваемости озимой пшеницы с рожью. Цитология и генетика. 1980; 14(4):71-73. [Surikov I.M., Kissel N.I. Inheritance of good winter wheat–rye crossability. Tsitologiya i Genetika = Citology and Genetics. 1980; 14(4):71-73. (in Russian)]

7. Суриков И.М., Киссель Н.И. Скрещиваемость мягкой пшеницы с диплоидной и тетраплоидной рожью. Цитология и генетика. 1985;19(1):40-43. [Surikov I.M., Kissel N.I. Crossability of bread wheat with diploid and tetraploid rye. Tsitologiya i Genetika = Citology and Genetics. 1985;19(1):40-43. (in Russian)]

8. Суриков И.М., Киссель Н.И. Скрещиваемость культурного ячменя с мягкой пшеницей. Цитология и генетика. 1987;21(3):221-225. [Surikov I.M., Kissel N.I. Crossability of Hordeum vulgare with Triticum aestivum. Tsitologiya i Genetika = Cytology and Genetics. 1987;21(3):221-225. (in Russian)]

9. Хакимова А.Г., Губарева Н.К., Кошкин В.А., Митрофанова О.П. Генетическое разнообразие и селекционная ценность синтетической гексаплоидной пшеницы, привлеченной в коллекцию ВИР. Вавиловский журнал генетики и селекции. 2019;23(6):738-745. [Khakimova A.G., Gubareva N.K., Koshkin V.A., Mitrofanova O.P. Genetic diversity and breeding value of synthetic hexaploid wheat introduced into the VIR collection. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2019;23(6): 738-745. DOI 10.18699/VJ19.548. (in Russian)]

10. Alfares W. Analyses génétiques et moléculaires du locus SKr impliqué dans l’aptitude du blé (Triticum aestivum L.) au croisement avec le seigle (Secale cereale L.). 2009. Available at: https://tel.archivesouvertes.fr/tel-00724743. (in French).

11. Alfares W., Bouguennec A., Balfourier F., Gay G., Bergès H., Vautrin S., Sourdille P., Bernard M., Feuillet C. Fine mapping and marker development for the crossability gene SKr on chromosome 5BS of hexaploid wheat (Triticum aestivum L.). Genetics. 2009;183(2): 469-481. DOI 10.1534/genetics.109.107706.

12. Backhouse W.O. Note on the inheritance of “crossability”. J. Genet. 1916;6(2):91-94.

13. Bertin I., Fish L., Foote T.N., Knight E., Snape J., Moore G. Development of consistently crossable wheat genotypes for alien wheat gene transfer through fine-mapping of the Kr1 locus. Theor. Appl. Genet. 2009;119(8);1371-1381. DOI 10.1007/s00122-009-1141-z.

14. Bouguennec A., Lesage V.S., Gateau I., Sourdille P., Jahier J., Lonnet P. Transfer of recessive skr crossability trait into well-adapted French wheat cultivar Barok through marker-assisted backcrossing method. Cereal Res. Comm. 2018;46(4):604-615. DOI 10.1556/0806.46.2018.043.

15. Cadalen T., Boeuf C., Bernard S., Bernard M. An intervarietal molecular marker map in Triticum aestivum L. Em. Thell. and comparison with a map from a wide cross. Theor. Appl. Genet. 1997;94(3-4): 367-377. DOI 10.1007/s001220050425.

16. Cai H., Liu Q. Characrerizing the sequences of Kr gene in common wheat. Triticeae Genomics Genetics. 2012;3(4):38-43. DOI 10.5376/tgg.2012.03.0004.

17. Cai H., Zhao W., Xu Z., Jiang W., Yao Y., Zhao Y. the differences of molecular structure of dominant Kr1 and recessive kr1 gene in common wheat. J. Nucl. Agric. Sci. 2016;30(5):841-849. (in Chinese)

18. Cakmak I., Derici R., Torun B., Tolay I., Brau H.J., Schlegel R. Role of rye chromosomes in improvement of zinc efficiency in wheat and triticale. Plant Soil. 1997;196:249-253. DOI 10.1023/A:1004210309876.

19. Chantret N., Cenci A., Sabot F., Anderson O., Dubcovsky J. Sequencing of the Triticum monococcum hardness locus reveals good microcolinearity with rice. Mol. Genet. Genomics. 2004;271(4):377-386. DOI 10.1007/s00438-004-0991-y.

20. Crespo-Herrera L.A., Garkava-Gustavsson L., Åhman I. A systematic review of rye (Secale cereale L.) as a source of resistance to pathogens and pests in wheat (Triticum aestivum L.). Hereditas. 2017; 154(14):1-9. DOI 10.1186/s41065-017-0033-5.

21. Ehdaie B., Whitkus R.W., Waines J.G. Root biomass, water-use efficiency, and performance of wheat–rye translocations of chromosomes 1 and 2 in spring bread wheat ‘Pavon’. Crop Sci. 2003;43(2):710-717. DOI 10.2135/cropsci2003.7100.

22. Falk D., Kasha K.J. Comparison of the crossability of rye (Secale cereale) and Hordeum bulbosum onto wheat (Triticum aestivum). Can. J. Genet. Cytol. 1981;23(1):81-88. DOI 10.1139/g81-010.

23. Falk D., Kasha K.J. Genetic studies of the crossability of hexaploid wheat with rye and Hordeum bulbosum. Theor. Appl. Genet. 1983; 64(4):303-307. DOI 10.1007/BF00274168.

24. Fedak G., Jui P.Y. Chromosomes of Chinese Spring wheat carrying genes for crossability with Betzes barley. Can. J. Genet. Cytol. 1982; 24(2):227-233. DOI 10.1139/g82-024.

25. Fu Y.B., Somers D.J. Genome-wide reduction of genetic diversity in wheat breeding. Crop Sci. 2009;49(1):161-168. DOI 10.2135/cropsci2008.03.0125.

26. Gay G., Bernard M. Production of intervarietal substitution lines with improved interspecific crossability in the wheat cv Courtot. Agronomie. 1994;14(1):27-32. DOI 10.1051/agro:19940103.

27. Hao C., Wang L., Zhang X., You G., Dong Y., Jia J., Liu X., Shang X., Liu S., Cao Y. Genetic diversity in Chinese modern wheat varieties revealed by microsatellite markers. Sci. China Ser. C. 2006;49(3): 218-226. DOI 10.1007/s11427-006-0218-z.

28. Hiebert C.W., Thomas J.B., Somers D.J., McCallum B.D., Fox S.L. Microsatellite mapping of adult-plant leaf rust resistance gene Lr22a in wheat. Theor. Appl. Genet. 2007;115(6):877-884. DOI 10.1007/s00122-007-0604-3.

29. Jalani B.S., Moss J.P. The site of action of crossability genes (Kr1, Kr2) between Triticum and Secale. II. Proportion of pistils containing pollen tubes and effects of alternate pollination on seed set. Euphytica. 1981;30(1):105-112. DOI 10.1007/BF00033665.

30. Kahiluoto H., Kaseva J., Balek J., Olesen J.E., Ruiz-Ramos M., Gobin A., Kersebaum K.C., Takáč J., Ruget F., Ferrise R., Bezak P., Capellades G., Dibari C., Mäkinen H., Nendel C., Ventrella D., Rodríguez A., Bindi M., Trnka M. Decline in climate resilience of European wheat. Proc. Natl. Acad. Sci. USA. 2019;116(1):123-128. DOI 10.1073/pnas.1804387115.

31. Kearsey M.J., Hyne V. QTL analysis: a simple ‘marker-regression’ approach. Theor. Appl. Genet. 1994;89(6):698-702. DOI 10.1007/BF00223708.

32. Khlestkina E.K. Molecular markers in genetic studies and breeding. Russ. J. Genet. Appl. Res. 2014;4(3):236-244. DOI 10.1134/S2079059714030022.

33. Koba T., Shimada T. Crossability of common wheat [Triticum aestivum] with Aegilops squarrosa. Wheat Inf. Serv. 1993;77:7-12.

34. Krolow K.D. Untersuchungen fiber die Kreuzbarkeit zwischen Weizen and Roggen. Z. Pflanzenzüchtg. 1970;64:44-72. (in German)

35. Lamoureux D., Boeuf C., Regad F., Garsmeur O., Charmet G., Sourdille P., Lagoda P., Bernard M. Comparative mapping of the wheat 5B short chromosome arm distal region with rice, relative to a crossability locus. Theor. Appl. Genet. 2002;105(5):759-765. DOI 10.1007/s00122-002-0916-2.

36. Lange W., Riley R. The position on chromosome 5B of wheat of the locus determining crossability with rye. Genet. Res. 1973;22(2):143- 153. DOI 10.1017/S0016672300012933.

37. Lange W., Wojciechowska B. The crossing of common wheat (Triticum aestivum L.) with cultivated rye (Secale cereale L.). I. Crossability, pollen grain germination and pollen tube growth. Euphytica. 1976;25(1):609-620. DOI 10.1007/BF00041598.

38. Lange W., Wojciechowska B. The crossing of common wheat (Triticum aestivum L.) with cultivated rye (Secale cereale L.). II. Fertilization and early post-fertilization developments. Euphytica. 1977; 26(2):287-297. DOI 10.1007/BF00026990.

39. Lein A. Die genetische Grundlage der Kreuzbarkeit zwischen Weizen und Roggen. Mol. General Genet. MGG. 1943;81(1):28-61. DOI 10.1007/BF01847441. (in German)

40. Leonova I.N. Molecular markers: Implementation in crop plant breeding for identification, introgression and gene pyramiding. Russ. J. Genet. Appl. Res. 2013;3(6):464-473. DOI 10.1134/S2079059713060051.

41. Li Z., Ren Z., Tan F., Tang Z., Fu S., Yan B., Ren T. Molecular cytogenetic characterization of new wheat-rye 1R(1B) substitution and translocation lines from a Chinese Secale cereale L. Aigan with resistance to stripe rust. PloS One. 2016;11(9):1-6. DOI 10.1371/journal.pone.0163642.

42. Liu K.D., Wang J., Li H.B., Xu C.G., Liu A.M., Li X.H., Zhang Q. A genome-wide analysis of wide compatibility in rice and the precise location of the S5 locus in the molecular map. Theor. Appl. Genet. 1997;95(5-6):809-814. DOI 10.1007/s001220050629.

43. Lorieux M., Ndjiondjop M.N., Ghesquière A. A first interspecific Oryza sativa×Oryza glaberrima microsatellite-based genetic linkage map. Theor. Appl. Genet. 2000;100(3-4):593-601. DOI 10.1007/s001229900061.

44. Mago R., Miah H., Lawrence G.J., Wellings C.R., Spielmeyer W., Bariana H.S., McIntosh R.A., Pryor A.J., Ellis J.G. High-resolution mapping and mutation analysis separate the rust resistance genes Sr31, Lr26 and Yr9 on the short arm of rye chromosome 1. Theor. Appl. Genet. 2005;112(1):41-50. DOI 10.1007/s00122-005-0098-9.

45. Manickavelu A., Koba T., Mishina K., Sassa H. Identification of differential gene expression for Kr1 gene in bread wheat using annealing control primer system. Mol. Biol. Rep. 2009a;36(8):2111-2118. DOI 10.1007/s11033-008-9423-0.

46. Manickavelu A., Koba T., Mishina K., Sassa H. Molecular characterization of crossability gene Kr1 for intergeneric hybridization in Triticum aestivum (Poaceae: Triticeae). Plant Syst. Evol. 2009b; 278(1-2):125-131. DOI 10.1007/s00606-008-0139-3.

47. McIntosh R.A., Dubcovsky J., Rogers J.W., Morris C.F., Appels R., Xia X. Catalogue of gene symbols for wheat. KOMUGI Integrated Wheat Science Database. 2014. Available at: https://shigen.nig.ac.jp/wheat/komugi/genes/symbolClassList.jsp.

48. Mishina K., Sato H., Manickavelu A., Sassa H., Koba T. Molecular mapping of SKr for crossability in common wheat. Breed Sci. 2009; 59(5):679-684. DOI 10.1270/jsbbs.59.679.

49. Molnár-Láng M. The crossability of wheat with rye and other related species. In: Molnár-Láng M., Ceoloni C., Doležel J. (Eds.). Alien Introgression in Wheat: Cytogenetics, Molecular Biology, and Genomics. Chem: Springer Int. Publ., 2015;103-120. DOI 10.1007/978-3-319-23494-6_4.

50. Molnár-Láng M., Cseh A., Szakács É., Molnár I. Development of a wheat genotype combining the recessive crossability alleles kr1kr1kr2kr2 and the 1BL.1RS translocation, for the rapid enrichment of 1RS with new allelic variation. Theor. Appl. Genet. 2010; 120(8):1535-1545. DOI 10.1007/s00122-010-1274-0.

51. Nelson J.C., Sorrells M.E., Van Deynze A.E., Lu Y.H., Atkinson M., Bernard M., Leroy P., Faris J.D., Anderson J.A. Molecular mapping of wheat: major genes and rearrangements in homoeologous groups 4, 5, and 7. Genetics. 1995;141(2):721-731.

52. Owuoche J.O., Briggs K.G., Taylor G.J. The efficiency of copper use by 5A/5RL wheat-rye translocation lines and wheat (Triticum aestivum L.) cultivars. Plant Soil. 1996;180(1):113-120. DOI 10.1007/BF00015417.

53. Pershina L.A. Plant chromosome engineering is an area of biotechnology. Russ. J. Genet. Appl. Res. 2014;4(4):311-317. DOI 10.1134/S207905971404008X.

54. Pershina L.A., Trubacheeva N.V. Interspecific incompatibility in the wide hybridization of plants and ways to overcome it. Russ. J. Genet. Appl. Res. 2017;7(4):358-368. DOI 10.1134/S2079059717040098.

55. Porceddu E., Ceoloni C., Lafiandra D., Tanzarella O.A., Scarascia Mugnozza G.T. Genetic resources and plant breeding: problems and prospects. In: Miller T.E., Koebner R.M.D. (Eds.). Proc. 7th. Int. Wheat Genetics Symp., 13-19 July. Cambridge, UK, Institute of Plant Science Research. Cambridge, 1988;1:17-21.

56. Porter D.R., Webster J.A., Burton R.L., Puterka G.J., Smith E.L. New sources of resistance to greenbug in wheat. Crop Sci. 1991;31(6): 1502-1504. DOI 10.2135/cropsci1991.0011183X003100060021x.

57. Pretorius Z.A., Singh R.P., Wagoire W.W., Payne T.S. Detection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis. f. sp. tritici in Uganda. Plant Dis. 2000;84(2):203. DOI 10.1094/PDIS.2000.84.2.203B.

58. Pyukkenen V.P., Pendinen G.I., Mitrofanova O.P. The characteristics of primary hybrids obtained in crosses between common wheat from China and cultivated rye. Russ. J. Genet. 2019;55(11):1306-1314. DOI 10.1134/S1022795419110115.

59. Rabinovich S.V. Importance of wheat-rye translocations for breeding modern cultivar of Triticum aestivum L. Euphytica. 1998;100(1-3): 323-340. DOI 10.1023/A:1018361819215.

60. Ren T.H., Chen F., Yan B.J., Zhang H.Q., Ren Z.L. Genetic diversity of wheat–rye 1BL.1RS translocation lines derived from different wheat and rye sources. Euphytica. 2012;183(2):133-146. DOI 10.1007/s10681-011-0412-3.

61. Ren T., Tang Z., Fu S., Yan B., Tan F., Ren Z., Li Z. Molecular cytogenetic characterization of novel wheat-rye T1RS.1BL translocation lines with high resistance to diseases and great agronomic traits. Front. Plant Sci. 2017;8:799. DOI 10.3389/fpls.2017.00799.

62. Ren T.H., Yang Z.J., Yan B.J., Zhang H.Q., Fu S.L., Ren Z.L. Development and characterization of a new 1BL.1RS translocation line with resistance to stripe rust and powdery mildew of wheat. Euphytica. 2009;169(2):207-213. DOI 10.1007/s10681-009-9924-5.

63. Riley R., Chapman V. The inheritance in wheat of crossability with rye. Genet. Res. 1967;9(3):259-267. DOI 10.1017/S0016672300010569.

64. Röder M.S., Korzun V., Wendehake K., Plaschke J., Tixier M.H., Leroy P., Ganal M.W. A microsatellite map of wheat. Genetics. 1998; 149(4):2007-2023.

65. Roussel V., Koenig J., Beckert M., Balfourier F. Molecular diversity in French bread wheat accessions related to temporal trends and breeding programmes. Theor. Appl. Genet. 2004;108(5):920-930. DOI 10.1007/s00122-003-1502-y.

66. Rui M., Zheng D.S., Fan L. The crossability percentages of 96 bread wheat landraces and cultivars from Japan with rye. Euphytica. 1995; 92(3):301-306. DOI 10.1007/BF00037112.

67. Schlegel R. Current list of wheats with rye and alien introgression. 2019. Available at: http://www.rye-gene-map.de/rye-introgression/index.html.

68. Sears E.R., Loegering W.Q., Rodenhiser H.A. Identification of chromosomes carrying genes for stem rust resistance in four varieties of wheat. Agron. J. 1957;49(4):208-212. DOI 10.2134/agronj1957.00021962004900040012x.

69. Singh S., Sethi G.S. Crossability of some bread wheat landraces and improved cultivars from western Himalayas with rye. Euphytica. 1991;53(2):137-141. DOI 10.1007/BF00023794.

70. Sitch L.A., Snape J.W., Firman S.J. Intrachromosomal mapping of crossability genes in wheat (Triticum aestivum). Theor. Appl. Genet. 1985;70(3):309-314. DOI 10.1007/BF00304917.

71. Snape J.W., Chapman V., Moss J., Blanchard C.E., Miller T.E. The crossabilities of wheat varieties with Hordeum bulbosum. Heredity. 1979;42(3):291-298. DOI 10.1038/hdy.1979.32.

72. Snape J., Zhang W., Wang Y., Moore G., Foote T., Dunford R., Zheng Y. Mapping of genes controlling crossability and homoeologous chromosome pairing on chromosome 5B using molecular markers. Ann. Wheat Newslett. 1995;41:205-206.

73. Somers D.J., Isaac P., Edwards K. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 2004;109(6):1105-1114. DOI 10.1007/s00122-004-1740-7.

74. Stein J.C., Howlett B., Boyes D.C., Nasrallah M.E., Nasrallah J.B. Molecular cloning of a putative receptor protein kinase gene encoded at the self-incompatibility locus of Brassica oleracea. Proc. Natl. Acad. Sci. USA. 1991;88(19):8816-8820. DOI 10.1073/pnas.88.19.8816.

75. Stein N., Prasad M., Scholz U., Thiel T., Zhang H., Wolf M., Kota R., Varshney R.K., Perovic D., Grosse I., Graner A. A 1,000-loci transcript map of the barley genome: new anchoring points for integrative grass genomics. Theor. Appl. Genet. 2007;114(5):823-839. DOI 10.1007/s00122-006-0480-2.

76. Szakács É., Szőke-Pázsi K., Kalapos B., Schneider A., Ivanizs L., Rakszegi M., Vida G., Molnár I., Molnár-Láng M. 1RS arm of Secale cereanum ‘Kriszta’confers resistance to stripe rust, improved yield components and high arabinoxylan content in wheat. Sci. Rep. 2020;10:1792. DOI 10.1038/s41598-020-58419-3.

77. Tang Z.X., Fu S.L., Ren Z.L., Zhang H.Q., Yang Z.J., Yan B.J. Characterization of three wheat cultivars possessing new 1BL.1RS wheat-rye translocations. Plant Breed. 2009;128(5):524-527. DOI 10.1111/j.1439-0523.2008.01598.x.

78. Timonova E.M., Dobrovol’skaya O.B., Sergeeva E.M., Bildanova L.L., Sourdille P., Feuillet C., Salina E.A. A comparative genetic and cytogenetic mapping of wheat chromosome 5B using introgression lines. Russ. J. Genet. 2013;49(12):1200-1206. DOI 10.1134/S1022795413120132.

79. Tixier M.H., Sourdille P., Charmet G., Gay G., Jaby C., Cadalen T., Bernard S., Nicolas P., Bernard M. Detection of QTLs for crossability in wheat using a doubled-haploid population. Theor. Appl. Genet. 1998;97(7):1076-1082. DOI 10.1007/s001220050994.

80. Wang J., Liu K.D., Xu C.G., Li X.H., Zhang Q. The high level of widecompatibility of variety ‘Dular’ has a complex genetic basis. Theor. Appl. Genet. 1998;97(3):407-412. DOI 10.1007/s001220050910.

81. Xie D.X., Devos K.M., Moore G., Gale M.D. RFLP-based genetic maps of the homoeologous group 5 chromosomes of bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 1993;87(1):70-74. DOI 10.1007/BF00223747.

82. Yang M.Y., Ren T.H., Yan B.J., Li Z., Ren Z.L. Diversity resistance to Puccinia striiformis f. sp. tritici in rye chromosome arm 1RS expressed in wheat. Genet. Mol. Res. 2014;13(4):8783-8793. DOI 10.4238/2014.October.27.20.

83. Zeven A.C. Crossability percentages of some 1400 bread wheat varieties and lines with rye. Euphytica. 1987;36(1):299-319. DOI 10.1007/BF00730677.

84. Zeven A.C., Van Heemert C. Germination of pollen of weed rye (Secale segetale L.) on wheat (Triticum aestivum L.) stigmas and the growth of the pollen tubes. Euphytica. 1970;19(2):175-179. DOI 10.1007/BF01902941.

85. Zhang L., Wang J., Zhou R., Jia J. Discovery of quantitative trait loci for crossability from a synthetic wheat genotype. J. Genet. Genomics. 2011;38(8):373-378. DOI 10.1016/j.jgg.2011.07.002.

86. Zheng Y.L., Luo M.C., Yen C., Yang J.L. Chromosome location of a new crossability gene in common wheat. Wheat Inf. Serv. (Japan). 1992;75:36-40.

87. Zheng-Song P., Deng-Cai L., Chi Y., Jun-Liang Y. Crossability of tetraploid wheat landraces native to Sichuan, Shaanxi, Gansu and Xinjiang provinces, China with rye. Genet. Resour. Crop Evol. 1998; 45(1):57-62. DOI 10.1023/A:1008669429068.


Просмотров: 74


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-0462 (Print)
ISSN 2500-3259 (Online)