Preview

Vavilov Journal of Genetics and Breeding

Advanced search

The study of genetic factors that determine the awned glume trait in bread wheat

https://doi.org/10.18699/VJ20.650

Abstract

Awns are bristle‐like structures, typically extending from the tip end of the lemmas in the florets of cereal species, including such economically important crops as wheat (Triticum aestivum L., T. durum Desf.), barley (Hordeum vulgare L.), rice (Oryza sativa L.), and rye (Secale cereale L.). The presence of long awns adhered at tip end of glumes is a characteristic feature of “Persian wheat” T. carthlicum Nevski spike. Glume outgrowth of T. carthlicum Nevski spike passes into a long awn, equal in length to the lemma awn. Awned glumes can be formed in T. aestivum and T. aethiopicum wheats, however, such forms are rare. Features of the awned glume development and the genetic determinants of this trait have been little studied. In this paper, we described the features of the development and inheritance of the tetra-awness (awned glume) trait of the bread wheat T. aestivum line CD 1167-8, using classical genetic analysis, molecular genetic mapping, and scanning electron microscopy. It was shown that the trait is inherited as a recessive monogenic. The gene for the awned glume trait of CD 1167-8 was mapped in the long arm of chromosome 5A, using the Illumina Infinium 15K Wheat Array (TraitGenetics GmbH), containing 15,000 SNPs associated with wheat genes. Results of allelism test and molecular-genetic mapping suggest that the gene for awned glumes in bread wheat is a recessive allele of the B1 awn suppressor. This new allele was designated the b1.ag (b1. awned glume). Analysis of the CD 1167-8 inflorescence development, using scanning electron microscopy, showed that awns had grown from the top of the lemmas and glumes simultaneously, and no differences in patterns of their development were found.

About the Authors

O. B. Dobrovolskaya
Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences; RUDN University, Agrarian and Technological Institute
Russian Federation
Novosibirsk


A. E. Dresvyannikova
Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
Russian Federation
Novosibirsk


E. D. Badaeva
Vavilov Institute of General Genetics of the Russian Academy of Sciences
Russian Federation
Moscow


K. I. Popova
Novosibirsk State Agricultural University
Russian Federation
Novosibirsk


M. Trávníčková
Crop Research Institute
Czech Republic
Prague


P. Martinek
Agrotest Fyto, Ltd.
Czech Republic
Kroměříž


References

1. Вавилов Н.И., Якушкина О.В. К филогенезу пшениц. Гибридологический анализ вида T. persicum Vav. и межвидовая гибридизация у пшениц. Тр. по прикл. бот., ген. и селекции. 1925;15(1): 3­159. [Vavilov N.I., Yakushina O.V. On the phylogenesis of wheat. Test cross analysis of T. persicum Vav. and interspecific hybridization of wheat. Trudy po Prikladnoy Botanike, Genetike i Selektsii = Proceedings on Applied Botany, Genetics, and Breeding. 1925;15(1); 3­159. (in Russian)]

2. Гандилян П.А. Колосовые культуры и их дикие сородичи Армянской ССР: Автореф. дис. … д­ра биол. наук. Ереван, 1973. [Gandilyan P.A. Spike crops and their wild relatives of the Armenian SSR: Doctor Sci. (Biol.) Dissertation. Yerevan, 1973. (in Russian)]

3. Гончаров Н.П. Сравнительная генетика пшениц и их сородичей. Новосибирск: Сиб. унив. изд­во, 2002. [Goncharov N.P. Comparative Genetics of Wheats and their Related Species. Novosibirsk: Siberian University Press, 2002. (in Russian)]

4. Гончаров Н.П. Сравнительная генетика пшениц и их сородичей. Изд. 2­е испр. и доп. Новосибирск: Акад. изд­во «Гео», 2012. [Goncharov N.P. Comparative Genetics of Wheats and their Related Species. Novosibirsk: Geo Publ., 2012. (in Russian)]

5. Добровольская О.Б. Молекулярно­генетические основы морфогенеза соцветия пшеницы: Автореф. дис. … д­ра биол. наук. Новосибирск, 2018. [Dobrovolskaya O.B. Molecular basis of wheat inflorescence morphogenesis: Doctor Sci. (Biol.) Dissertation. Novosibirsk, 2018. (in Russian)]

6. Дорофеев В.Ф., Филатенко А.А., Мигушова Э.Ф., Удачин Р.А., Якубцинер М.М. Культурная флора СССР. Т. 1. Пшеница. Л.: Колос, 1979. [Dorofeev V.F., Filatenko A.A., Migushova E.F., Udachin R.A., Yakubtsiner M.M. The Cultural Flora of the USSR. Vol. 1. Wheat. Leningrad: Kolos Publ., 1979. (in Russian)]

7. Ионова Н.Э. Роль отдельных органов в продукционном процессе растений яровой пшеницы разного эколого­географического происхождения: Автореф. дис. … канд. биол. наук. Спб., 2005. [Ionova N.E. The role of individual organs in the production of spring wheat plants of different ecological and geographical origins: Cand. Sci. (Biol.) Dissertation. St. Petersburg, 2005. (in Russian)]

8. Мигушова Э.Ф., Жуковский П.М. К познанию пшеницы T. ispahanicum Heslot. Тр. по прикл. бот., ген. и селекции. 1969;39(3): 71­90. [Migushova E.F., Zhukovsky P.M. Towards the knowledge of wheat T. ispahanicum Heslot. Trudy po Prikladnoy Botanike, Genetike i Selektsii = Proceedings on Applied Botany, Genetics, and Breeding. 1969;39(3):71­90. (in Russian)]

9. Рожков Р.В., Криворученко Р.В., Коваленко И.В. Генетический контроль тетраостости у пшеницы. Вестн. Харьковского национального аграрного университета. 2014;2(32):70­76. [Rozhkov R.V., Krivoruchenko R.V., Kovalenko I.V. Genetic control of tetrabeardedness in wheat. Vestnik Khar’kovskogo Natsional’nogo Agrarnogo Universiteta = Bulletin of the Kharkiv National Agrarian University. 2014;2(32):70­76. (in Ukrainian)]

10. Рокицкий П.Ф. Биологическая статистика. Минск: Вышейш. шк., 1973;77­79. [Rokitskii P.F. Biological Statistics. Minsk: Vysheishaya Shkola Publ., 1973;77­79. (in Russian)]

11. Badaeva E.D., Badaev N.S., Gill B.S., Filatenko A.A. Intraspecific karyotype divergence in Triticum araraticum (Poaceae). Plant Syst. Evol. 1994;192(1­2):117­145. DOI 10.1007/BF00985912.

12. Börner A., Schäfer M., Schmidt A., Grau M., Vorwald J. Associations between geographical origin and morphological characters in bread wheat (Triticum aestivum L.). Plant Genet. Resour. 2005;3(3):360­ 372. DOI 10.1079/PGR200589.

13. Dresvyannikova A.E., Watanabe N., Muterko A.F., Krasnikov A.A., Goncharov N.P., Dobrovolskaya O.B. Characterization of a dominant mutation for the liguleless trait: Aegilops tauschii liguleless (Lg-t-). BMC Plant Biol. 2019;19(1):55. DOI 10.1186/s12870­019­1635­z.

14. Fuller D.Q., Allaby R. Seed dispersal and crop domestication: shattering, germination and seasonality in evolution under cultivation. Annu. Plant Rev. Online. 2018;238­295. DOI 10.1002/9781119312994.apr0414.

15. Gill B.S., Friebe B., Endo T.R. Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum). Genome. 1991;34(5):830­839. DOI 10.1139/g91­128.

16. Haas M., Schreiber M., Mascher M. Domestication and crop evolution of wheat and barley: Genes, genomics, and future directions. J. Integr. Plant Biol. 2019;61(3):204­225. DOI 10.1111/jipb.12737.

17. Huang D., Zheng Q., Melchkart T., Bekkaoui Y., Konkin D.J.F., Kagale S., Martucci M., You F.M., Clarke M., Adamski N.M., Chinoy C., Steed A., McCartney C.A., Cutler A.J., Nicholson P., Feurtado J.A. Dominant inhibition of awn development by a putative zinc-finger transcriptional repressor expressed at the B1 locus in wheat. New Phytol. 2020;225:340­355. DOI 10.1111/nph.16154.

18. Kato K., Miura H., Akiyama M., Kuroshima M., Sawada S. RFLP mapping of the three major genes, Vrn1, Q and B1, on the long arm of chromosome 5A of wheat. Euphytica. 1998;101(1):91­95. DOI 10.1023/A:1018372231063.

19. Le Couviour F., Faure S., Poupard B., Flodrops Y., Dubreuil P., Praud S. Analysis of genetic structure in a panel of elite wheat varieties and relevance for association mapping. Theor. Appl. Genet. 2011; 123(5):715­727. DOI 10.1007/s00122­011­1621­9.

20. Mackay I.J., Bansept­Basler P., Barber T., Bentley A.R., Cockram J., Gosman N., Greenland A.J., Horsnell R., Howells R., O’Sullivan D.M., Rose G.A., Howell P.J. An eight­parent multiparent advanced generation inter­cross population for winter­sown wheat: creation, properties, and validation. G3 (Bethesda). 2014;4(9):1603­1610. DOI 10.1534/g3.114.012963.

21. Peleg Z., Saranga Y., Fahima T., Aharoni A., Elbaum R. Genetic control over silica deposition in wheat awns. Physiol. Plant. 2010;140(1): 10­20. DOI 10.1111/j.1399­3054.2010.01376.x.

22. Plaschke J., Ganal M.W., Röder M.S. Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor. Appl. Genet. 1995;91(6­7):1001­1007. DOI 10.1007/BF00223912.

23. Rebetzke G.J., Jimenez­Berni J.A., Bovill W.D., Deery D.M., James R.A. High­throughput phenotyping technologies allow accurate selection of stay­green. J. Exp. Bot. 2016;67(17):4919­4924. DOI 10.1093/jxb/erw301.

24. Ronin Y., Mester D., Minkov D., Korol A. Building reliable genetic maps: different mapping strategies may result in different maps. Nat. Sci. 2010;2(6):576­589. DOI 10.4236/ns.2010.26073.

25. Ronin Y., Minkov D., Mester D., Akhunov E., Korol A. Building ultradense genetic maps in the presence of genotyping errors and missing data. In: Advances in Wheat Genetics: from Genome to Field: Proc. of the 12th Int. Wheat Genetics Symposium. Springer Nature, 2015; 127­133. DOI 10.1007/978­4­431­55675­6.

26. Sears E.R. The aneuploids of common wheat. Missouri Agr. Expt. Stn. Res. Bull. 1954;572:1­59.

27. Sears E.R. Nullisomic­tetrasomic combinations in hexaploid wheat. In: Riley R., Lewis K.R. (Eds.). Chromosome Manipulations and Plant Genetics. Springer, Boston, MA. 1966;29­45. DOI 10.1007/978­1­4899­6561­5_4.

28. Sourdille P., Cadalen T., Gay G., Gill B., Bernard M. Molecular and physical mapping of genes affecting awning in wheat. Plant Breed. 2002;121(4):320­324. DOI 10.1046/j.1439­0523.2002.728336.x.

29. Voorrips R.E. MapChart: software for the graphical presentation of linkage maps and QTLs. J. Hered. 2002;93(1):77­78. DOI 10.1093/jhered/93.1.77.

30. Watkins A.E., Ellerton S. Variation and genetics of the awn in Triticum. J. Genet. 1940;40(1­2):243­270.

31. Yoshioka M., Iehisa J.C.M., Ohno R., Kimura T., Enoki H., Nishimura S., Nasuda S., Takumi S. Three dominant awnless genes in common wheat: Fine mapping, interaction and contribution to diversity in awn shape and length. PLoS One. 2017;12(4):e0176148. DOI 10.1371/journal.pone.0176148.


Review

Views: 877


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)