Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Соматический эмбриогенез представителей рода Larix: состояние и перспективы

https://doi.org/10.18699/VJ20.651

Полный текст:

Аннотация

Клональное размножение хвойных с использованием соматического эмбриогенеза имеет существенное значение для селекции древесных видов, реализации программ лесоразведения и лесовосстановления. В сочетании с криоконсервацией соматический эмбриогенез создает основу для получения хозяйственно ценных линий клонов и элитных генотипов. Использование в промышленных масштабах в лесном хозяйстве таких генетически проверенных линий клонов может значительно увеличить продуктивность лесов по сравнению с любыми доступными традиционными методами улучшения древесных культур. Лиственница считается одним из основных кандидатов для широкомасштабного лесовосстановления не только за счет обширности занимаемых ареалов, но и благодаря уникальному качеству ее древесины, быстрому росту и высокой экологической пластичности. Однако большинство видов лиственницы характеризуется неравномерностью урожаев и чрезвычайно низким качеством семян. В связи с этим получение посадочного материала для лесовосстановления из семян лиственниц на семенных плантациях нецелесообразно, но может быть успешно реализовано в программах по лесоразведению с применением технологий соматического эмбриогенеза. Исследования по соматическому эмбриогенезу лиственницы проводятся уже более тридцати лет, что позволило накопить значительный опыт в данной области. К настоящему времени изучены условия инициации и поддержания эмбриогенных культур, формирования и развития соматических зародышей. Достигнут значительный прогресс в изучении как факторов, влияющих на эти процессы, так и молекулярных механизмов, лежащих в основе различных этапов эмбриогенеза. Однако имеющихся на сегодняшний день знаний о соматическом эмбриогенезе представителей рода Larix все еще недостаточно для разработки технологий получения селекционно-ценного растительного материала in vitro. В обзоре проведен анализ современного состояния исследований по проблеме соматического эмбриогенеза представителей рода Larix. Особое внимание уделено вопросам выбора эксплантов для соматического эмбриогенеза, составу сред для культивирования, зависимости потенциала соматического эмбриогенеза от продолжительности культивирования, генетическому контролю соматического эмбриогенеза.

Об авторах

В. Н. Шмаков
Сибирский институт физиологии и биохимии растений Сибирского отделения Российской академии наук
Россия
Иркутск


Ю. М. Константинов
Сибирский институт физиологии и биохимии растений Сибирского отделения Российской академии наук; Иркутский государственный университет
Россия
Иркутск


Список литературы

1. Abaimov A.P., Barzut V.M., Berkutenko A.N., Buitink J., Martinsson O., Milyutin L.I., Polezhaev A., Putenikhin V.P., Takata K. Seed collection and seed quality of Larix spp. from Russia: Initial phase on the Russian-Scandinavian Larch Project. Eurasian J. For. Res. 2002;4:39-49.

2. Attree S.M., Fowke L.C. Embryogeny of gymnosperms: advances in synthetic seed technology of conifers. Plant Cell Tissue Organ Cult. 1993;35(1):1-35. DOI 10.1007/BF00043936.

3. Bailian L., Wyckoff G.W. Breeding strategies for Larix decidua, L. leptolepis and their hybrids in the United States. For. Genet. 1994;1: 65-72.

4. Becwar M.R., Nagmani R., Wann S.R. Initiation of embryogenic cultures and somatic embryo development in loblolly pine (Pinus taeda). Can. J. For. Res. 1990;20:810-817. DOI 10.1139/x90-107.

5. Belorussova A.S., Tret’yakova I.N. Patterns of somatic embryo formation in Siberian larch: embryological aspects. Russ. J. Dev. Biol. 2008;39(2):83-91. DOI 10.1134/S1062360408020045.

6. Bonga J.M. Frozen storage stimulates the formation of embryo-like structures andelongating shoots in explants from mature Larix decidua and L. × eurolepsis trees. Plant Cell Tissue Organ Cult. 1996;46:91-101. DOI 10.1007/BF00034841.

7. Bonga J.M. The effect of collection date and frozen storage on the formation of embryo-like structures and elongating shoots from explants from mature Larix decidua and L. × eurolepis. Plant Cell Tissue Organ Cult. 1997;51:195-200. DOI 10.1023/A:1005932628498.

8. Bonga J.M. The effect of various culture media on the formation of embryo-like structures in cultures derived from explants taken from mature Larix decidua. Plant Cell Tissue Organ Cult. 2004;77:43-48. DOI 10.1023/B:TICU.0000016488.79965.b7.

9. Bonga J.M. Conifer clonal propagation in tree improvement programs. In: Park Y.S., Bonga J.M., Moon H.K. (Eds.). Vegetative Propagation of Forest Trees. Seoul, Korea: National Institute of Forest Science (NIFoS), 2016;3-31.

10. Bonga J.M. Can explant choice help resolve recalcitrance problems in in vitro propagation, a problem still acute especially for adult conifers? Trees. 2017;31:781-789. DOI 10.1007/s00468-016-1509-z.

11. Bonga J.M., Klimaszewska K., Lelu M.A., von Aderkas P. Somatic embryogenesis in Larix. In: Jain S., Gupta P., Newton R. (Eds.). Somatic Embryogenesis in Woody Plants. Kluwer Acad. Publ., 1995; 3:315-339. DOI 10.1007/978-94-011-0960-4-20.

12. Bonga J.M., Klimaszewska K., von Aderkas P. Recalcitrance in clonal propagation, in particular of conifers. Plant Cell Tissue Organ Cult. 2010;100:241-254. DOI 10.1007/s11240-009-9647-2.

13. Bonga J.M., Pond S.E. Adventitious shoot formation in cultures of 30-year-old Larix decidua, L. leptolepis, L. eurolepis, and L. laricina trees. Plant Cell Tissue Organ Cult. 1991;26:45-51. DOI 10.1007/BF00116609.

14. Burg K., Helmersson A., Bozhkov P., von Arnold S. Developmental and genetic variation in nuclear microsatellite stability during somatic embryogenesis in pine. J. Exp. Bot. 2007;58:687-698. DOI 10.1093/jxb/erl241.

15. Chalupa V. Micropropagation of Larix decidua Mill. and Pinus sylvestris L. Biologia Plantarum (Praha). 1989;31(5):400-407. DOI 10.1007/BF02876363.

16. Chang S., Mahon E.L., MacKay H.A., Rottmann W.H., Strauss S.H., Pijut P.M., Powell W.A., Coffey V., Lu H., Mansfield S.D., Jones T.J. Genetic engineering of trees: progress and new horizons. In Vitro Cell. Dev. Biol. Plant. 2018;54:341-376. DOI 10.1007/s11627-018-9914-1.

17. Charest P.J., Klimaszewska K. Cryopreservation of germplasm of Larix and Picea species. In: Bajaj Y.P.S. (Ed.). Cryopreservation of Plant Germplasm I. (Ser. Biotechnology in Agriculture and Forestry. Vol. 32). Springer, Berlin, Heidelberg, 1995;191-203. DOI 10.1007/978-3-662-03096-7_12.

18. Chen S., Chen S., Chen F., Wu T., Wang Y., Yi S. Somatic embryogenesis in mature zygotic embryos of Picea likiangensis. Biologia. Sect. Botany. 2010;65(5):853-858. DOI 10.2478/s11756-010-0089-4.

19. Cornu D., Geoffrion C. Aspects de l’embryogenèse somatique chez le mélèze. Bull. Soc. Bot. Fr. 1990;137:25-34. DOI 10.1080/01811789.1990.10827026.

20. Cuesta C., Ordás R.J., Fernández B., Rodrı́guez A. Clonal micropropagation of six selected half-sibling families of Pinus pinea and somaclonal variation analysis. Plant Cell Tissue Organ Cult. 2008; 95:125-130. DOI 10.1007/s11240-008-9412-y.

21. Cyr D.R. Cryopreservation of embryogenic cultures of conifers and its application to clonal forestry. In: Jain S., Gupta P., Newton R. (Eds.). Somatic Embryogenesis in Woody Plants. Forestry Sciences. Springer, Dordrecht, 1999;55:239-261. DOI 10.1007/978-94-017-3032-7_10.

22. Cyr D.R., Klimaszewska K. Conifer somatic embryogenesis: II. Applications. Dendrobiology. 2002;48:41-49. DeVerno L.L., Charest R.J., Bonen L. Mitochondrial DNA variation in somatic embryogenic cultures of Larix. Theor. Appl. Genet. 1994; 88:727-732. DOI 10.1007/BF01253977.

23. Dylis N.V. The Larch. Moscow: Lesnaya Promyshlennost Publ., 1981. (in Russian)

24. Earnshaw B.A., Johnson M.A. Control of wild carrot somatic embryo development by antioxidants. Plant Physiol. 1987;85:273-276. DOI 10.1104/pp.85.1.273.

25. Efremov S.P., Milyutin L.I. (Eds.). Larch Biodiversity of Asian Russia. Novosibirsk: Acad. Publ. House “Geo”, 2010. (in Russian)

26. Ewald D. Advances in tissue culture of adult larch. In Vitro Cell. Dev. Biol. Plant. 1998;34(4):325-330. DOI 10.1007/BF02822742.

27. Ewald D., Kretzschmar U., Chen Y. Continuous micropropagation of juvenile larch from different species via adventitious bud formation. Biol. Plant. 1997;39:321-329. DOI 10.1023/A:1000959621891.

28. Ewald D., Weckwerth W., Naujoks G., Zocher R. Formation of embryolike structures in tissue cultures of different yew species. J. Plant Physiol. 1995;147:139-143. DOI 10.1016/S0176-1617(11)81426-4.

29. Goddard M.E., Hayes B.J. Genomic selection. J. Anim. Breed. Genet. 2007;124(6):323-330. DOI 10.1111/j.1439-0388.2007.00702.x.

30. Goryachkina O.V., Park M.E., Tretyakova I.N. Cytogenetic peculiarities of Larix sibirica Ledeb. Embryogenic cell lines in in vitro culture. Vestnik Tomskogo Gosudarstvennogo Universiteta. Biologiya = Tomsk State University Journal of Biology. 2017;39:140-153. DOI 10.17223/19988591/39/9. (in Russian)

31. Gowere S.T., Richards J.H. Larches: deciduous conifers in an evergreen world. BioScience. 1990;40(11):818-826. DOI 10.2307/1311484.

32. Guillaumot D., Lelu-Walter M.-A., Germot A., Meytraud F., Gastinel L., Riou-Khamlichi C. Expression patterns of LmAP2L1 and LmAP2L2 encoding two-APETALA2 domain proteins during somatic embryogenesis and germination of hybrid larch (Larix × marschlinsii). J. Plant Physiol. 2008;165:1003-1010. DOI 10.1016/j.jplph.2007.08.009.

33. Gupta P.K., Durzan D.J. Shoot multiplication for mature trees of Douglas-fir (Pseudotsuga menziesii) and sugar pine (Pinus lambertiana). Plant Cell Rep. 1985;4:177-179. DOI 10.1007/BF00269282.

34. Gutmann M., von Aderkas P., Labe P., Lelu M.-A. Effects of abscisic acid on somatic embryo maturation of hybrid larch. J. Exp. Bot. 1996;47(305):1905-1917. DOI 10.1093/jxb/47.12.1905.

35. Harry I.S., Thompson M.R., Thorpere T.A. Generation of plantlets from mature embryos of western larch. In Vitro Cell. Dev. Biol. 1991; 27(2):89-98. DOI 10.1007/BF02632134.

36. Harveng L., Trontin J.F., Reymond I., Canlet F., Pâques M. Molecular evidence of true-to-type propagation of a 3-year-old Norway spruce through somatic embryogenesis. Planta. 2001;213:828-832. DOI 10.1007/s004250100628.

37. Hassan M.M. In vitro conservation of date palm somatic embryos using growth-retardant conditions. In: Al-Khayri J., Jain S., Johnson D. (Eds.). Date Palm Biotechnology Protocols Volume II. Methods in Molecular Biology. Vol. 1638. New York, NY: Humana Press, 2017; 61-70. DOI 10.1007/978-1-4939-7159-6_6.

38. Heinze B., Schmidt J. Monitoring genetic fidelity vs somaclonal variation in Norway spruce (Picea abies) somatic embryogenesis by RAPD analysis. Euphytica. 1995;85:341-345. DOI 10.1007/BF000 23965.

39. Isabel N., Boivin R., Levasseur С., Charest P.-M., Bousquet J., Tremblay F.M. Occurrence of somaclonal variation among somatic embryo-derived white spruces (Picea glauca, Pinaceae). Am. J. Bot. 1996;83(9):1121-1130. DOI 10.2307/2446195.

40. Isah T. Induction of somatic embryogenesis in woody plants. Acta Physiol. Plant. 2016;38:118. DOI 10.1007/s11738-016-2134-6.

41. Kim Y., Moon H. Enhancement of somatic embryogenesis and plant regeneration in Japanese larch (Larix leptolepis). Plant Cell Tissue Organ Cult. 2007;88:241-245. DOI 10.1007/s11240-007-9202-y.

42. Kim Y., Moon H. Effect of TIBA, PCIB and phloroglucinol on somatic embryomaturation and germination in Japanese larch (Larix leptolepis). J. Plant Biotechnol. 2009;36:230-235. DOI 10.5010/JPB.2009.36.3.230.

43. Kim Y.W. Initiation of embryogenic callus from mature zygotic embryos in Japanese larch (Larix kaempferi). J. Plant Biotechnol. 2015; 42:223-227. DOI 10.5010/JPB.2015.42.3.223.

44. Kim Y.W., Youn Y., Noh E.R., Kim J.C. Somatic embryogenesis and plant regeneration from immature zygotic embryos of Japanese larch (Larix leptolepis). Plant Cell Tissue Organ Cult. 1998;55:95-101. DOI 10.1023/A:1006120302512.

45. Klimaszewska K. Recovery of somatic embryos and plantlets from protoplast cultures of Larix × eurolepis. Plant Cell Rep. 1989a;8: 440-444. DOI 10.1007/BF00269044.

46. Klimaszewska K. Plantlet development from immature zygotic embryos of hybrid larch through somatic embryogenesis. Plant Science. 1989b;63(1):95-103. DOI 10.1016/0168-9452(89)90105-2.

47. Klimaszewska K., Devantier Y., Lachance D., Lelu M.A., Charest P.J. Larix laricina (tamarack): somatic embryogenesis and genetic transformation. Can. J. For. Res. 1997;27(4):538-550. DOI 10.1139/x96-208.

48. Klimaszewska K., Hargreaves C., Lelu-Walter M.A., Trontin J.F. Advances in conifer somatic embryogenesis since year 2000. In: Germana M., Lambardi M. (Eds.). In Vitro Embryogenesis in Higher Plants. Methods in Molecular Biology. Vol. 1359. New York, NY: Humana Press, 2016;131-166. DOI 10.1007/978-1-4939-3061-6-7.

49. Klimaszewska K., Overton C., Stewart D., Rutledge R.G. Initiation of somatic embryos and regeneration of plants from primordial shoots of 10-year-old somatic white spruce and expression profiles of 11 genes followed during the tissue culture process. Planta. 2011; 233:635-647. DOI 10.1007/s00425-010-1325-4.

50. Klimaszewska K., Rutledge R.G. Is there potential for propagation of adult spruce trees through somatic embryogenesis? In: Park Y.S., Bonga J.M., Moon H.K. (Eds.). Vegetative Propagation of Forest Trees. Seoul, Korea: National Institute of Forest Science (NIFoS), 2016;195-210.

51. Klimaszewska K., Ward C., Cheliak W.M. Cryopreservation and plant regeneration from embryogenic cultures of larch (Larix × eurolepis) and black spruce (Picea mariana). J. Exp. Bot. 1992;43(246):73-79. DOI 10.1093/jxb/43.1.73.

52. Korlach J., Zoglauer K. Developmental patterns during direct somatic embryogenesis in protoplast cultures of european larch (Larix decidua Mill.). Plant Cell Rep. 1995;15:242-247. DOI 10.1007/BF00193728.

53. Koropachinsky I.Yu., Milyutin L.I. Natural Hybridization in Woody Plants. Novosibirsk: Acad. Publ. House “Geo”, 2013.

54. Kraft A., Kadolsky M. Hybrid larch (Larix × eurolepis Henry). In: Jain S.M., Gupta P. (Eds.). Step Wise Protocols for Somatic Embryogenesis of Important Woody Plants. Forestry Sciences. Vol. 84. Springer, Cham., 2018;149-158. DOI 10.1007/978-3-319-89483-6_11.

55. Krutovsky K.V., Tretyakova I.N., Oreshkova N.V., Pak M.E., Kvitko O.V., Vaganov E.A. Somaclonal variation of haploid in vitro tissue culture obtained from Siberian larch (Larix sibirica Ledeb.) megagametophytes for whole genome de novo sequencing. In Vitro Cell. Dev. Biol. Plant. 2014;50:655-664. DOI 10.1007/s11627-014-9619-z.

56. Label P., Lelu M.-A. Influence of exogenous abscisic acid on germination and plantlet conversion frequencies of hybrid larch somatic embryos (Larix × leptoeuropaea) relation with in planta abscisic acid and abscisic acid glucose ester levels. Plant Growth Regul. 1994;15: 175-182. DOI 10.1007/BF00024107.

57. Label P., Lelu M.-A. Exogenous abscisic acid fate during maturation of hybrid larch (Larix × leptoeuropaea) somatic embryos. Physiologia Plantarum. 2000;109:456-462. DOI 10.1034/j.1399-3054.2000.100413.x.

58. Lelu M.A., Bastien C., Klimaszewska K., Ward C., Charest P.J. An improved method for somatic plantlet production in hybrid larch (Larix × leptoeuropaea): Part 1. Somatic embryo maturation. Plant Cell Tissue Organ Cult. 1994a;36:107-115. DOI 10.1007/BF00048321.

59. Lelu M.A., Bastien C., Klimaszewska K., Charest P.J. An improved method for somatic plantlet production in hybrid larch (Larix × leptoeuropaea): Part 2. Control of germination and plantlet development. Plant Cell Tissue Organ Cult. 1994b;36:117-127. DOI 10.1007/BF00048322.

60. Lelu M.A., Klimaszewska K., Charest P.J. Somatic embryogenesis from immature and mature zygotic embryos and from cotyledons and needles of somatic plantlets of Larix. Can. J. For. Res. 1994c; 24:100-106. DOI 10.1139/x94-015.

61. Lelu M.A., Klimaszewska K., Pflaum G., Bastien C. Effect of maturation duration on desiccation tolerance in hybrid larch (Larix × leptoeuropaea Dengler) somatic embryos. In Vitro Cell. Dev. Biol. 1995;31:15-20. DOI 10.1007/BF02632220.

62. Lelu-Walter M.A., Pâques L.E. Simplified and improved somatic embryogenesis of hybrid larches (Larix × eurolepis and Larix × marschlinsii). Perspectives for breeding. Ann. For. Sci. 2009;66:104. DOI 10.1051/forest/2008079.

63. Levée V., Lelu M.A., Jouanin L., Cornu D., Pilate G. Agrobacterium tumefaciens-mediated transformation of hybrid larch (Larix kaempferi × L. decidua) and transgenic plant regeneration. Plant Cell Rep. 1997;16:680-685. DOI 10.1007/s002990050301.

64. Li K., Sun X., Han H., Zhang S. Isolation, characterization and expression analysis of the Baby Boom (BBM) gene from Larix kaempferi × L. olgensis during adventitious rooting. Gene. 2014;551:111- 118. DOI 10.1016/j.gene.2014.08.023.

65. Li L., Zhang L., Qi L., Han S. Characterization and expression of the Somatic Embryogenesis Receptor­like Kinase 1 (SERK1) gene during somatic embryogenesis of Larix kaempferi. For. Res. 2013;6: 673-680.

66. Li S., Li W., Han S., Yang W., Qi L. Stage-specific regulation of four HD­ZIP III transcription factors during polar pattern formation in Larix leptolepis somatic embryos. Gene. 2013;522:177-183. DOI 10.1016/j.gene.2013.03.117.

67. Li W., Zhang S., Han S., Wu T., Zhang J., Qi L. Regulation of LaMYB33 by miR159 during maintenance of embryogenic potential and somatic embryo maturation in Larix kaempferi (Lamb.) Carr. Plant Cell Tissue Organ Cult. 2013;113(1):131-136. DOI 10.1007/s11240-012-0233-7.

68. Li W., Zhang S., Han S., Wu T., Zhang J., Qi L. The post-transcriptional regulation of LaSCL6 by miR171 during maintenance of embryogenic potential in Larix kaempferi (Lamb.) Carr. Tree Genet. Genomes. 2014;10(1):223-229. DOI 10.1007/s11295-013-0668-y.

69. Li Z., Fan Y., Dang S., Li W., Qi L., Han S. LaMIR166a-mediated auxin biosynthesis and signaling affect somatic embryogenesis in Larix leptolepis. Mol. Genet. Genomics. 2018;293(6):1355-1363. DOI 10.1007/s00438-018-1465-y.

70. Li Z., Li S., Zhang L., Han S., Li W., Xu H., Yang W., Liu Y., Fan Y., Qi L. Overexpression of miR166a inhibits cotyledon formation in somatic embryos and promotes lateral root development in seedlings of Larix leptolepis. Plant Cell Tissue Organ Cult. 2016;127(2):461- 473. DOI 10.1007/s11240-016-1071-9.

71. Li Z., Li W., Han S., Qi L. Germination ability of somatic embryos in Larix leptolepis. For. Res. 2017a;6:999-1003.

72. Li Z., Zhang L., Li W., Qi L., Han S. MIR166a affects the germination of somatic embryos in Larix leptolepis by modulating IAA biosynthesis and signaling genes. Plant Growth Regul. 2017b;36(4):889- 896. DOI 10.1007/s00344-017-9693-7.

73. Litvay J.D., Verma D.C., Johnson M.A. Influence of a loblolly pine (Pinus taeda L.) culture medium and its components on growth and somatic embryogenesis of the wild carrot (Daucus carota L.). Plant Cell Rep. 1985;4:325-328. DOI 10.1007/BF00269890.

74. Lloyd G., McCown B.H. Commercially feasible micropropagation of mountain laurel, Kalmia latifolia by use of shoot tip culture. In: Proc. of the Int. Plant Propagators Soc. 1980;30:421-427.

75. Lu S., Zhang S., Qi L., Sun X., Wang J. Somatic embryogenesis from immature embryos of Larix kaempferi. Scientia Silvae Sinicae. 2005;41(02):48-52.

76. Ma Y., Weber M., Dumont-BéBoux N., Webber J., von Aderkas P. Megagametophytes of Douglas fir (Pseudotsuga menziesii) and hybrid larch (Larix × eurolepis) in culture: multiplication of neck cells and the formation of binucleate cells. Protoplasma. 1998;204(3-4): 219-225. DOI 10.1007/BF01280325.

77. Makarenko S.P., Shmakov V.N., Dudareva L.V., Stolbikova A.V., Semenova N.V., Tret’yakova I.N., Konstantinov Y.M. Fatty acid composition of total lipids in embryogenic and nonembryogenic callus lines of larch. Russ. J. Plant Physiol. 2016;63(2):252-258. DOI 10.1134/S1021443716020102.

78. Martinsson O. The Russian-Scandinavian Larch Project – Seed collection and seed quality. Integrating Tree Breeding and Forestry. In: Haapanen M., Mikola J. (Eds.). Proc. of the Nordic Group for Management of Genetic Resources of Trees, Meeting at Mekrijärvi, Finland, March 23–27, 2001. The Finnish Forest Research Institute Research Papers. 2002;107-108.

79. Marum L., Rocheta M., Maroco J., Oliveira M.M., Miguel C. Analysis of genetic stability at SSR loci during somatic embryogenesis in maritime pine (Pinus pinaster). Plant Cell Rep. 2009;28:673-682. DOI 10.1007/s00299-008-0668-9.

80. Mathieu M., Lelu-Walter M.A., Blervacq A.S., David H., Hawkins S., Neutelings G. Germin-like genes are expressed during somatic embryogenesis and early development of conifers. Plant Mol. Biol. 2006;61:615-627. DOI 10.1007/s11103-006-0036-5.

81. Mo L.H., Egertsdotter U., von Arnold S. Secretion of specific extracellular proteins by somatic embryos of Picea abies is dependent on embryo morphology. Ann. Bot. 1996;77:143-152.

82. Munoz-Concha D. Clonal propagation, forest trees. In: Thomas B., Murray B.G., Murphy D.J. (Eds.). Encyclopedia of Applied Plant Sciences. Acad. Press, 2017;433-436. DOI 10.1016/b978-0-12-394807-6.00148-9.

83. Murashige T., Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum. 1962;15: 473-497. DOI 10.1111/j.1399-3054.1962.tb08052.x.

84. Nagmani R., Bonga J.M. Embryogenesis in subcultured callus of Larix decidua. Can. J. For. Res. 1985;15:1088-1091. DOI 10.1139/x85-177.

85. Niskanen A.M., Lu J., Seitz S., Keinonen K., von Weissenberg K., Pappinen A. Effect of parent genotype on somatic embryogenesis in Scots pine (Pinus sylvestris). Tree Physiol. 2004;24(11):1259-1265. DOI 10.1093/treephys/24.11.1259.

86. Ogita S., Sasamoto H., Kubo T. Maturation and plant recovery from embryogenic cells of Japanese larch: effect of abscisic acid in relation to their morphology. J. For. Res. 1999a;4(3):241-244. DOI 10.1007/BF02762255.

87. Ogita S., Sasamoto H., Kubo T. Selection and microculture of single embryogenic cell clusters in japanese conifers: Picea jezoensis, Larix leptolepis and Cryptomeria japonica. In Vitro Cell. Dev. Biol. Plant. 1999b;35(5):428-431. DOI 10.1007/s11627-999-0061-6.

88. Ozudogru E.A., Lambardi M. Cryotechniques for the long-term conservation of embryogenic cultures from woody plants. In: Germana M., Lambardi M. (Eds.). In Vitro Embryogenesis in Higher Plants. Methods in Molecular Biology. Vol. 1359. New York, NY: Humana Press, 2016;537-550. DOI 10.1007/978-1-4939-3061-6_32.

89. Ozudogru E.A., Previati A., Lambardi M. In vitro conservation and cryopreservation of ornamental plants. In: Jain S.M., Ochatt S.J. (Eds.). Protocols for In Vitro Propagation of Ornamental Plants. Methods in Molecular Biology. Vol. 589. New York, NY: Humana Press, 2010;303-324. DOI 10.1007/978-1-60327-114-1_28.

90. Pâques L.E., Foffová E., Heinze B., Lelu-Walter M.A., Liesebach M., Philippe G. Larches (Larix sp.). In: Pâques L.E. (Ed.). Forest Tree Breeding in Europe: Current State-of-the-Art and Perspectives. Managing Forest Ecosystems. Vol. 25. Springer Science+Business Media, Dordrecht, 2013;13-122. DOI 10.1007/978-94-007-6146-9_2.

91. Pak M.E., Ivanitskaya A.S., Dvoinina L.M., Tretyakova I.N. The embryogenic potential of long-term proliferation cell lines of Larix sibirica in vitro. Sibirskij Lesnoj Zhurnal = Siberian Journal of Forest Science. 2016;1:27-38. DOI 10.15372/SJFS20160103. (in Russian)

92. Park Y.S. Implementation of conifer somatic embryogenesis in clonal forestry: technical requirements and deployment considerations. Ann. For. Sci. 2002;59(5-6):651-656. DOI 10.1051/forest:2002051.

93. Park Y.S., Barrett J.D., Bonga J.M. Application of somatic embryogenesis in high-value clonal forestry: deployment, genetic control, and stability of cryopreserved clones. In Vitro Cell. Dev. Biol. Plant. 1998;34:231-239. DOI 10.1007/BF02822713.

94. Park Y.S., Beaulieu J., Bousquet J. Multi-varietal forestry integrating genomic selection and somatic embryogenesis. In: Park Y.S., Bonga J.M., Moon H.K. (Eds.). Vegetative Propagation of Forest Trees. Seoul, Korea: National Institute of Forest Science (NIFoS), 2016; 302-322.

95. Park Y.S., Bonga J.M. Conifer micropropagation: its function in tree improvement programs. In: Ahuja M.R. (Ed.). Micropropagation of Woody Plants. Kluwer, Dordrecht: Acad. Publ., 1992;457-470. DOI 10.1007/978-94-015-8116-5-27.

96. Pattanavibool R., Klimaszewska K., von Aderkas P. Interspecies protoplast fusion in Larix: comparison of electric and chemical methods. In Vitro Cell. Dev. Biol. Plant. 1998;34(3):212-217. DOI 10.1007/BF02822710.

97. Pattanavibool R., von Aderkas P., Hanhijarvi A., Simola L.K., Bonga J.M. Diploidization in megagametophyte-derived cultures of the gymnosperm Larix decidua. Theor. Appl. Genet. 1995;90(5):671- 674. DOI 10.1007/BF00222132.

98. Pullman G.S., Frampton J. Fraser fir (Abies fraseri [Pursh] Poir.). In: Jain S.M., Gupta P. (Eds.). Step Wise Protocols for Somatic Embryogenesis of Important Woody Plants. Forestry Sciences. Vol. 84. Springer, Cham. 2018;33-48. DOI 10.1007/978-3-319-89483-6_3.

99. Qi L., Han Y., Li L., Ewald D., Han S. The somatic embryogenesis and establishment of transformation experiment system in Larix principis­rupprechtii. Shi Yan Sheng Wu Xue Bao. 2000;33(4):357-365.

100. Qi L., Han Y., Han S., Wang J., Ewald D. Effects of maltose, NAA and ABA on somatic maturation and radicle rooting of Larix principisrupprechtii. Scientia Silvae Sinicae. 2004;40(1):52-57.

101. Quoirin M. Lepoivre P. Étude de milleux adates aux cultures in vitro de Prunus. Acta Hortic. 1977;78:439-432.

102. Rohr R., von Aderkas P., Bonga J.M. Ultrastructural changes in haploid embryoids of Larix decidua during early embryogenesis. Am. J. Bot. 1989;76(10):1460-1467. DOI 10.1002/j.1537-2197.1989.tb15127.x.

103. Rupps A., Raschke J., Rümmler M., Linke B., Zoglauer K. Identification of putative homologs of Larix decidua to BABYBOOM (BBM), LEAFY COTYLEDON1 (LEC1), WUSCHEL­related HOMEOBOX2 (WOX2) and SOMATIC EMBRYOGENESIS RECEPTORlike KINASE (SERK) during somatic embryogenesis. Planta. 2016; 243(2):473-488. DOI 10.1007/s00425-015-2409-y.

104. Rysin L.P. Larch Forests in Russia. Moscow: KMK Publ., 2010. (in Russian)

105. Saly S., Joseph C., Corbineau F., Lelu M.A., Côme D. Induction of secondary somatic embryogenesis in hybrid larch (Larix × leptoeuropaea) as related to ethylene. Plant Growth Regul. 2002;37(3): 287-294. DOI 10.1023/A:1020856112765.

106. Sarmast M.K. Genetic transformation and somaclonal variation in conifers. Plant Biotechnol. Rep. 2016;10(6):309-325. DOI 10.1007/s11816-016-0416-5t.

107. Sarmast M.K. In vitro propagation of conifers using mature shoots. J. For. Res. 2018;29(3):565-574. DOI 10.1007/s11676-018-0608-7.

108. Semenova N.V., Shmakov V.N., Park M.E., Tretyakova I.N., Konstantinov Yu.M., Dudareva L.V. Particularities of neutral lipid composition in embryogenic and non-embryogenic calluses lines of Larix sibirica Lebed. Biochemistry (Moscow) Supplement. Series A: Membrane and Cell Biology. 2020;3(in press).

109. Shuklina A.S., Tret’yakova I.N. Somatic embryogenesis of species of the genus Pinus in culture in vitro. Uspekhi Sovremennoi Biologii = Advances in Current Biology. 2019;139(2):184-195. DOI 10.1134/S004213241902008X. (in Russian)

110. Song Y., Li S., Bai X., Zhang H. Screening and verification of the factors influencing somatic embryo maturation of Larix olgensis. J. For. Res. 2018;29(6):1581-1589. DOI 10.1007/s11676-018-0694-6.

111. Song Y., Zhen C., Zhang H.G., Li S.J. Embryogenic callus induction and somatic embryogenesis from immature zygotic embryos of Larix olgensis. Scientia Silvae Sinicae. 2016;52(10):45-54.

112. Teyssier C., Grondin C., Bonhomme L., Lomenech A.M., Vallance M., Morabito D., Label P., Lelu-Walter M.A. Increased gelling agent concentration promotes somatic embryo maturation in hybrid larch (Larix × eurolepsis): a 2-DE proteomic analysis. Physiologia Plantarum. 2011;141(2):152-165. DOI 10.1111/j.1399-3054.2010.01423.x.

113. Teyssier C., Maury S., Beaufour M., Grondin C., Delaunay A., Le Mette C., Ader K., Cadene M., Label P., Lelu-Walter M.A. In search of markers for somatic embryo maturation in hybrid larch (Larix × eurolepis): global DNA methylation and proteomic analyses. Physiologia Plantarum. 2014;150(2):271-291. DOI 10.1111/ppl.12081.

114. Thompson R.G., von Aderkas P. Somatic embryogenesis and plant regeneration from immature embryos of western larch. Plant Cell Rep. 1992;11:379-385.

115. Tremblay L., Levasseur C., Temblay F.M. Frequency of somaclonal variation in plants of black spruce (Picea mariana, Pinaceae) and white spruce (P. glauca, Pinaceae) derived from somatic embryogenesis and identification of some factors involved in genetic instability. Am. J. Bot. 1999;86(10):1373-1381.

116. Тretiyakova А.V., Demina Е.А., Rekoslavskaya N.I., Salyaev R.K., Stolbikov А.S. Peculiar properties of the process of obtaining tissue cultures of Abies sibirica Ledeb. Izvestiya Irkutskogo Gosudarstvennogo Universiteta. Seriya “Biologiya. Ecologiya” = The Bulletin of Irkutsk State University. Series “Biology. Ecology”. 2014;10:11-23. (in Russian)

117. Tret’yakova I.N., Barsukova A.V. Preservation of gene pool of siberian conifer species by somatic embryogenesis in vitro – modern method of biotechnology. Khvoynyye Borealnoy Zony = Conifers of the Boreal Area. 2010;XXVII(1-2):203-206. (in Russian)

118. Tret’yakova I.N., Barsukova A.V. Somatic embryogenesis in in vitro culture of three larch species. Russ. J. Dev. Biol. 2012;43(6):353- 361. DOI 10.1134/S1062360412060082.

119. Tretyakova I.N., Ivanitskaya A.S., Park M.E. In vitro productivity and somaclonal variability of embryogenic cell lines of Siberian larch. Lesovedenie = Russian Journal of Forest Science. 2015;1:27-35. (in Russian)

120. Tretyakova I.N., Kudoyarova G.R., Park M.E., Kazachenko A.S., Shuklina A.S., Akhiyarova G.R., Korobova A.V., Veselov S.U. Content and immunohistochemical localization of hormones during in vitro somatic embryogenesis in long-term proliferating Larix sibirica cultures. Plant Cell Tissue Organ Cult. 2019;136:511. DOI 10.1007/s11240-018-01533-y.

121. Tretyakova I.N., Maria E.P., Alyona S.I., Alla S.S., Inga A.L. Reproduction and genetic stability of long-term proliferative embryogenic cell lines of Larix sibirica in vitro. Int. J. Cell Sci. Mol. Biol. 2017;2(4):555592. DOI 10.19080/IJCSMB.2017.02.555592.

122. Tretyakova I.N., Pak M.E. Somatic polyembriogenesis of Larix sibirica in embryogenic in vitro culture. Russ. J. Dev. Biol. 2018; 49(4):222- 233. DOI 10.1134/S1062360418040069.

123. Tretyakova I.N., Pak M.E., Baranova A.A., Lisetskaya I.A., Shuklina A.S., Rogozhin E.A., Sadykova V.S. Use of antimicrobial peptides secreted by Trichoderma micromycetes to stimulate embryogenic cultures of Larix sibirica. Russ. J. Dev. Biol. 2018;49(6):370-380. DOI 10.1134/S1062360419010053.

124. Tretyakova I.N., Park M.E., Ivanitskaya A.S., Oreshkova N.V. Peculiarities of somatic embryogenesis of long-term proliferating embryogenic cell lines of Larix sibirica in vitro. Russ. J. Plant Physiol. 2016;63(6):800-810. DOI 10.1134/S1021443716050137.

125. Tret’yakova I.N., Voroshilova E.V., Shuvaev D.N., Pak M.E. The prospects of clonal micropropagation of conifers using in vitro culture via somatic embryogenesis. Khvoynyye Borealnoy Zony = Conifers of the Boreal Area. 2012;XXХ(1-2):180-186. (in Russian)

126. Trontin J.-F., Aronen T., Hargreaves C., Montalbán I.A., Moncaleán P., Reeves C., Quoniou S., Lelu-Walter M.-A., Klimaszewska K. International effort to induce somatic embryogenesis in adult pine trees. In: Park Y.S., Bonga J.M., Moon H.K. (Eds.). Vegetative Propagation of Forest Trees. Seoul, Korea: National Institute of Forest Science (NIFoS), 2016a;211-260.

127. Trontin J.-F., Klimaszewska K., Morel A., Hargreaves C., Lelu-Walter M.A. Molecular aspects of conifer zygotic and somatic embryo development: a review of genome-wide approaches and recent insights. In: Germana M., Lambardi M. (Eds.). In Vitro Embryogenesis in Higher Plants. Methods in Molecular Biology. Vol. 1359. New York: Humana Press, 2016b;167-209. DOI 10.1007/978-1-4939-3061-6-8.

128. Umehara M., Ogita S., Sasamoto H., Kamada H. Inhibitory factor(s) of somatic embryogenesis regulated suspensor differentiation in suspension culture of Japanese larch (Larix leptolepis Gordon). Plant Biotechnol. 2004;21(2):87-94. DOI 10.5511/plantbiotechnology.21.87.

129. Umehara M., Ogita S., Sasamoto H., Koshino H., Asami T., Fujioka S., Yoshida S., Kamada H. Identification of a novel factor, vanillyl benzyl ether, which inhibits somatic embryogenesis of Japanese larch (Larix leptolepis Gordon). Plant Cell Physiol. 2005;46(3):445-453. DOI 10.1093/pcp/pci041.

130. Umehara M., Ogita S., Sasamoto H., Koshino H., Nakamura T., Asami T., Yoshida S., Kamada H. Identification of a factor that complementarily inhibits somatic embryogenesis with vanillyl benzyl ether in Japanese larch. In Vitro Cell. Dev. Biol. Plant. 2007;43:203-208. DOI 10.1007/s11627-006-9016-3.

131. Vendrame W.A. Cryopreservation. Orchid propagation: from laboratories to greenhouses. In: Lee Y.-I., Yeung E.C.-T. (Eds.). Methods and Protocols, Springer Protocols Handbooks. Springer Science+Business Media, 2018;283-302. DOI 10.1007/978-1-4939-7771-0_15.

132. von Aderkas P. Embryogenesis from protoplasts of haploid european larch. Can. J. For. Res. 1992;22(3):397-402. DOI 10.1139/x92-052.

133. von Aderkas P., Anderson P. Aneuploidy and polyploidization in haploid tissue cultures of Larix decidua. Physiologia Plantarum. 1993; 88:73-77. DOI 10.1111/j.1399-3054.1993.tb01762.x.

134. von Aderkas P., Bonga J.M. Formation of haploid embryoids of Larix decidua: early embryogenesis. Am. J. Bot. 1988;75(5):690-700. DOI 10.1002/j.1537-2197.1988.tb13491.x.

135. von Aderkas P., Bonga J.M. Plants from haploid tissue culture of Larix decidua. Theor. Appl. Genet. 1993;87:225-228.

136. von Aderkas P., Bonga J.M. Influencing micropropagation and somatic embryogenesis in mature trees by manipulation of phase change, stress and culture environment. Tree Physiol. 2000;20:921-928. DOI 10.1093/treephys/20.14.921.

137. von Aderkas P., Bonga J.M., Nagmani R. Promotion of embryogenesis in cultured megagametophytes of Larix decidua. Can. J. For. Res. 1987;17:1293-1296. DOI 10.1139/x87-200.

138. von Aderkas P., Klimaszewska K., Bonga J.M. Diploid and haploid embryogenesis in Larix leptolepis, L. decidua, and their reciprocal hybrids. Can. J. For. Res. 1990;20:9-14. DOI 10.1139/x90-002.

139. von Aderkas P., Lelu M.A., Label P. Plant growth regulator levels during maturation of larch somatic embryos. Plant Physiol. Biochem. 2001;39:495-502. DOI 10.1016/S0981-9428(01)01271-2.

140. von Aderkas P., Pattanavibool R., Hristoforoglu K., Ma Y. Embryogenesis and genetic stability in long term megagametophyte-derived cultures of larch. Plant Cell Tissue Organ Culture. 2003;75(1):27- 34. DOI 10.1023/A:1024614209524.

141. von Aderkas P., Rohr R., Sundberg B., Gutmann M., DumontBéBoux N., Lelu M.A. Abscisic acid and its influence on development of the embryonal root cap, storage product and secondary metabolite accumulation in hybrid larch somatic embryos. Plant Cell Tissue Organ Cult. 2002;69(2):111-120. DOI 10.1023/A:1015245627220.

142. von Aderkas P., Teyssier C., Charpentier J.P., Gutmann M., Pâques L., Le Metté C., Ader K., Label P., Kong L., Lelu-Walter M.A. Effect of light conditions on anatomical and biochemical aspects of somatic and zygotic embryos of hybrid larch (Larix × marschlinsii). Ann. Bot. 2015;115:605-615. DOI 10.1093/aob/mcu254.

143. von Aderkas P., Thompson R.G., Zaki M., Benkrima L. Somatic embryogenesis in western larch (Larix occidentalis). In: Bajaj Y.P.S. (Ed.). Somatic Embryogenesis and Synthetic Seed I. Biotechnology in Agriculture and Forestry. Springer, Berlin, Heidelberg, 1995; 30:378-387. DOI 10.1007/978-3-662-03091-2-25.

144. von Arnold S. Improved efficiency of somatic embryogenesis in mature embryos of Picea abies (L.) Karst. J. Plant Physiol. 1987;128: 233-244.

145. Vondráková Z., Krajňáková J., Fischerová L., Vágner M., Eliášová K. Physiology and role of plant growth regulators in somatic embryogenesis. In: Park Y.S., Bonga J.M., Moon H.K. (Eds.). Vegetative Propagation of Forest Trees. Seoul, Korea: National Institute of Forest Science (NIFoS), 2016;123-169.

146. Vooková B., Kormuťák A. Abies biotechnology – research and development of tissue culture techniques for vegetative propagation. Global Science Books. Takamatsu, 2007;39-46.

147. Wang X., Lu L., Hao H., Teng N., Guo Y., Yang Y., Guo Z., Lin J., Chen T. High-efficiency somatic embryogenesis and morphohistology and histochemistry of somatic embryo development in Larix leptolepis Gordon. For. Stud. China. 2007;9(3):182-188. DOI 10.1007/s11632-007-0029-8.

148. Wang X., Yang Y. Study on the somatic embryogenesis of Larix leptolepis. J. Anhui Agric. Sci. 2010;4:2118-2121,2180.

149. Wei X., Wang X. Phylogenetic split of Larix: evidence from paternally inherited cpDNA trnT­trnF region. Plant Syst. Evol. 2003;239: 67-77. DOI 10.1007/s00606-002-0264-3.

150. Wendling I., Trueman S.J., Xavier A. Maturation and related aspects in clonal forestry. Part I: concepts, regulation and consequences of phase change. New Forests. 2014;45:449-471. DOI 10.1007/s11056-014-9421-0.

151. Weng Y., Park Y.S., Krasowski M.J., Mullin T.J. Allocation of varietal testing efforts for implementing conifer multi-varietal forestry using white spruce as a model species. Ann. For. Sci. 2011;68:129. DOI 10.1007/s13595-011-0014-1.

152. Yeung E.C., Thorpe T.A. Somatic embryogenesis in Picea glauca. In: Jain S.M., Gupta P.K. (Eds.). Protocol for Somatic Embryogenesis in Woody Plants. Forestry Sciences. Vol. 77. Springer, Dordrecht, 2005;47-58. DOI 10.1007/1-4020-2985-3_5.

153. Zang Q., Li W., Qi L. Regulation of LaSCL6 expression by genomic structure, alternative splicing, and microRNA in Larix kaempferi. Tree Genet. Genomes. 2019;15:57. DOI 10.1007/s11295-019-1362-5.

154. Zhang J., Zhang S., Han S., Wu T., Li X., Li W., Qi L. Genome-wide identification of microRNAs in larch and stage-specific modulation of 11 conserved microRNAs and their targets during somatic embryogenesis. Planta. 2012;236:647-657. DOI 10.1007/s00425-012-1643-9.

155. Zhang L., Li W., Xu H., Qi L., Han S. Cloning and characterization of four differentially expressed cDNAs encoding NFYA homologs involved in responses to ABA during somatic embryogenesis in Japanese larch (Larix leptolepis). Plant Cell Tissue Organ Cult. 2014; 117:293-304. DOI 10.1007/s11240-014-0440-5.

156. Zhang S., Han S., Yang W., Wei H., Zhang M., Qi L. Changes in H2O2 content and antioxidant enzyme gene expression during the somatic embryogenesis of Larix leptolepis. Plant Cell Tissue Organ Cult. 2010a;100:21-29. DOI 10.1007/s11240-009-9612-0.

157. Zhang S., Zhou J., Han S., Yang W., Li W., Wei H., Li X., Qi L. Four abiotic stress-induced miRNA families differentially regulated in the embryogenic and non-embryogenic callus tissues of Larix leptolepis. Biochem. Biophys. Res. Commun. 2010b;398:355-360. DOI 10.1016/j.bbrc.2010.06.056.

158. Zhang Y., Zhang S., Han S., Li X., Qi L. Transcriptome profiling and in silico analysis of somatic embryos in Japanese larch (Larix leptolepis). Plant Cell Rep. 2012;31:1637-1657. DOI 10.1007/s00299-012-1277-1.

159. Zhao J., Li H., Fu S., Chen B., Sun W., Zhang J., Zhang J. An iTRAQbased proteomics approach to clarify the molecular physiology of somatic embryo development in prince Rupprecht’s larch (Larix principis­rupprechtii Mayr). PLoS One. 2015a;10(3):e0119987. DOI 10.1371/journal.pone.0119987.

160. Zhao J., Wang B., Wang X., Zhang Y., Dong M., Zhang J. iTRAQbased comparative proteomic analysis of embryogenic and non-embryogenic tissues of prince Rupprecht’s larch (Larix principis­rupprechtii Mayr). Plant Cell Tissue Organ Cult. 2015b;120:655-669. DOI 10.1007/s11240-014-0633-y.


Просмотров: 75


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-0462 (Print)
ISSN 2500-3259 (Online)