Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Comparative analysis of gene expression in tea plant (Camellia sinensis (L.) Kuntze) under low-temperature stress

https://doi.org/10.18699/VJ20.653

Abstract

Low-temperature stress is one of the main factors limiting the distribution and reducing the yield of many subtropical crops, including the tea crop. Efficient breeding to develop frost-tolerant cultivars requires a reliable set of genetic markers for identifying resistance donors, and that is why it is necessary to reveal the specific genetic response in frost-tolerant genotypes in comparison with frost- susceptible ones. In this work, we performed a comparative analysis of the expression of 18 tea genes (ICE1, CBF1, DHN1, DHN2, DHN3, NAC17, NAC26, NAC30, bHLH7, bHLH43, P5CS, WRKY2, LOX1, LOX6, LOX7, SnRK1.1, SnRK1.2, SnRK1.3) under cold and frost conditions in two tea genotypes, tolerant and susceptible. Low-temperature stress was induced by placing the potted plants in cold chambers and lowering the temperature to 0…+2 °С for 7 days (cold stress), followed by a decrease in temperature to –4…–6 °С for 5 days (frost stress). Relative electrical conductivity of leaf was measured in response to the stress treatments, and a significant difference in the frost tolerance of the two tea genotypes was confirmed. Cold exposure did not lead to a change in the electrical conductivity of leaf tissue. On the other hand, frost treatment resulted in increased REC in both genotypes and to a greater extent in the susceptible genotype. Increased expression of all the genes was shown during cold and frost. The genes that were strongly expressed in the tolerant tea genotype were revealed: ICE1, CBF1, DHN2, NAC17, NAC26, bHLH43, WRKY2, P5CS, LOX6, SnRK1.1, SnRK1.3. These genes can be proposed as markers for the selection of frost-tolerance donors in tea germplasm collections. Additionally, it was shown that the tolerant genotype is characterized by an earlier response to stress at the stage of cold acclimation. The study of the expression of the identified genes in different organs of tea plants and in different exposures to low temperature is relevant for further investigations.

About the Authors

L. S. Samarina
Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences
Russian Federation
Sochi


A. O. Matskiv
Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences
Russian Federation
Sochi


N. G. Koninskaya
Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences
Russian Federation
Sochi


T. A. Simonyan
Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences
Russian Federation
Sochi


V. I. Malyarovskaya
Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences
Russian Federation
Sochi


L. S. Malyukova
Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences
Russian Federation
Sochi


References

1. Гвасалия М.В. Спонтанные и индуцированные сорта и формы чая (Camellia sinensis (L.) Kuntze) во влажных субтропиках России и Абхазии, перспективы их размножения и сохранения в культуре in vitro. Краснодар, 2015. [Gvasaliya M.V. Spontaneous and Induced Cultivars and Forms of Tea (Camellia sinensis (L.) Kuntze) in Humid Subtropics of Russia and Georgia: Prospects for their Cultivation and in vitro Conservation. Krasnodar, 2015. (in Russian)]

2. Самарина Л.С., Малюкова Л.С., Гвасалия М.В., Ефремов А.М., Маляровская В.И., Лошкарёва С.В., Туов М.Т. Генетические механизмы акклиматизации чайного растения (Camellia sinensis (L.) Kuntze) к холодовому стрессу. Вавиловский журнал генетики и селекции. 2019;23(8):958­963. DOI 10.18699/VJ19.572. [Samarina L.S., Malyukova L.S., Gvasaliya M.V., Efremov A.M., Malyarovskaya V.I., Loshkareva S.V., Tuov M.T. Genes underlying cold acclimation in the tea plant (Camellia sinensis (L.) Kuntze). Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2019;23(8):958­963. DOI 10.18699/VJ19.572. (in Russian)]

3. Туов М.Т., Рындин А.В. Итоги изучения перспективных гибридов чая в субтропиках Российской Федерации. Субтропическое и декоративное садоводство. 2011;44:101­109. [Tuov M.T., Ryndin A.V. The results of studying prospective hybrids of tea plant in subtropics of the Russian Federation. Subtropicheskoye i Dekorativnoye Sadovodstvo = Subtropical and Ornamental Horticulture. 2011;44:101­109. (in Russian)]

4. Bajji M., Kinet J.­M., Lutts S. The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Plant Growth Regul. 2002;36:61­70. https://doi.org/10.1023/A:1014732714549.

5. Ban Q., Wang X., Pan C., Wang Y., Kong L., Jiang H., Xu Y., Wang W., Pan Y., Li Y., Jiang Ch. Comparative analysis of the response and gene regulation in cold resistant and susceptible tea plants. PLoS One. 2017;12(12):e0188514. DOI 10.1371/journal.pone.0188514.

6. Chen J., Gao T., Wan S., Zhang Y., Yang J., Yu Y., Wang W. Genomewide identification, classification and expression analysis of the HSP gene superfamily in tea plant (Camellia sinensis). Int. J. Mol. Sci. 2018;19:2633. DOI 10.3390/ijms19092633.

7. Cui X., Wang Y.­X., Liu Z.­W., Wang W.­L., Li H., Zhuang J. Transcriptome­wide identification and expression profile analysis of the bHLH family genes in Camellia sinensis. Funct. Integr. Genomics. 2018;18:489­503. https://doi.org/10.1007/s10142-018-0608-x.

8. Dubouzet J.G., Sakuma Y., Ito Y., Kasuga M., Dubouzet E.G., Miura S., Seki M., Shinozaki K., Yamaguchi­Shinozaki K. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought­, high­salt­ and coldresponsive gene expression. Plant J. 2003;33:751e763.

9. Hanin M., Brini F., Ebel Ch., Toda Y., Takeda Sh., Masmoudi K. Plant dehydrins and stress tolerance. Plant Signal. Behav. 2011;6(10): 1503­1509. DOI 10.4161/psb.6.10.17088.

10. Hao X., Horvath D.P., Chao W.S., Yang Y., Wang X., Xiao B. Identification and evaluation of reliable reference genes for quantitative real­time PCR analysis in tea plant (Camellia sinensis (L.) O. Kuntze). Int. J. Mol. Sci. 2014;15:22155­22172. DOI 10.3390/ijms151 222155.

11. Hao X., Wang L., Zeng J., Yang Y., Wang X. Response and adaptation mechanisms of tea plant to low­temperature stress. In: Han W.Y., Li X., Ahammed G. (Eds.) Stress Physiology of Tea in the Face of Climate Change. Singapore: Springer, 2018:39­61. https://doi.org/10.1007/978-981-13-2140-5_3.

12. Li L., Lu X., Ma H., Lyu D. Jasmonic acid regulates the ascorbateglutathione cycle in Malus baccata Borkh. roots under low rootzone temperature. Acta Physiol. Plant. 2017;39:174.

13. Li Y., Wang X., Ban Q., Zhu X., Jiang Ch., Wei Ch., Bennetzen J.L. Comparative transcriptomic analysis reveals gene expression associated with cold adaptation in the tea plant Camellia sinensis. BMC Genomics. 2019;20(1):624. DOI 10.1186/s12864-019-5988-3.

14. Megha S., Basu U., Kav N.N.V. Regulation of low temperature stress in plants by microRNAs. Plant Cell Environ. 2018;41:1­15.

15. Morsy M.R., Almutairi A.M., Gibbons J., Yun S.J., de Los Reyes B.G. The OsLti6 genes encoding low­molecular­weight membrane proteins are differentially expressed in rice cultivars with contrasting sensitivity to low temperature. Gene. 2005;344:171e180.

16. Shen W., Li H., Teng R., Wang Y., Wang W., Zhuang J. Genomic and transcriptomic analyses of HD-Zip family transcription factors and their responses to abiotic stress in tea plant (Camellia sinensis). Genomics. 2018. DOI 10.1016/j.ygeno.2018.07.009.

17. Somerville C. Direct tests of the role of membrane lipid composition in low temperature­induced photoinhibition and chilling sensitivity in plants and cyanobacteria. Proc. Natl. Acad. Sci. USA. 1995; 92:6215e6218.

18. Szekely G., Abraham E., Cseplo A., Rigó G., Zsigmond L., Csiszár J., Ayaydin F., Strizhov N., Jásik J., Schmelzer E., Koncz C., Szabados L. Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J. 2008;53(1):11­28. https://doi.org/10.1111/j.1365-313X.2007.03318.x.

19. Thomashow M.F. Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1999;50:571­599.

20. Wang Y., Jiang C.J., Li Y.Y., Wei C.L., Deng W.W. CsICE1 and CsCBF1: two transcription factors involved in cold responses in Camellia sinensis. Plant Cell Rep. 2012;31:27­34. DOI 10.1007/s00299-011-1136-5.

21. Wang Y.­X., Liu Z.­W., Wu Z.­J., Li H., Zhuang J. Transcriptomewide identification and expression analysis of the NAC gene family in tea plant [Camellia sinensis (L.) O. Kuntze]. PLoS One. 2016a; 11(11):e0166727. DOI 10.1371/journal.pone.0166727.

22. Wang Y., Shu Z., Wang W., Jiang X., Li D., Pan J., Li X. CsWRKY2, a novel WRKY gene from Camellia sinensis, is involved in cold and drought stress responses. Biol. Plant. 2016b;60:443­451. DOI 10.1007/s10535-016-0618-2.

23. Yuan H.Y., Zhu X.P., Zeng W., Yang H.M., Sun N., Xie S.X., Cheng L. Isolation and transcription activation analysis of the CsCBF1 gene from Camellia sinensis. Acta Botanica Boreali-Occidentalia Sinica. 2013;110:147­151.

24. Yue C., Cao H.L., Wang L., Zhou Y.H., Huang Y.T., Hao X.Y., Wang Y.C., Wang B., Yang Y.J., Wang X.C. Effects of CA on sugar metabolism and sugar­related gene expression in tea plant during the winter season. Plant Mol. Biol. 2015;88:591­608. DOI 10.1007/s11103-015-0345-7.

25. Zhu J., Wang X., Guo L., Xu Q., Zhao S., Li F., Yan X., Liu Sh., Wei Ch. Characterization and alternative splicing profiles of the lipoxygenase gene family in tea plant (Camellia sinensis). Plant Cell Physiol. 2018;59(9):1765­1781. DOI 10.1093/pcp/pcy091.


Review

Views: 961


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)