Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Генетическое разнообразие Raphanus sativus L. коллекции ВИР по алюмоустойчивости

https://doi.org/10.18699/VJ20.655

Полный текст:

Аннотация

Редис и редька (Raphanus sativus L.) – популярные и широко возделываемые в мире корнеплодные овощные культуры, которые занимают важное место в питании человека. На их продуктивность и качество существенное влияние оказывают эдафические стрессоры. Основным фактором, определяющим фитотоксичность кислых почв, служит повышенная концентрация подвижных ионов алюминия в почвенном растворе. Аккумуляция алюминия в тканях корня нарушает процессы деления клеток, инициации и роста боковых корней, снабжения растения минеральными веществами и водой. Изучение внутривидовой изменчивости по алюмоустойчивости R. sativus является важным этапом в селекции этих культур. Цель настоящего исследования заключалась в изучении генетического разнообразия культур R. sativus на примере 109 образцов редиса и редьки различного эколого-географического происхождения, принадлежащих 23 сортотипам, 14 разновидностям европейского, китайского и японского подвидов, по признаку устойчивости к токсиче скому действию ионов алюминия. При отсутствии специализированной для вида методики экспресс-оценки взят метод оценки алюмоустойчивости с использованием эриохромцианинового красителя, разработанный для зерновых культур, в основе которого лежит учет степени восстановления митотической активности корней проростков, подвергнутых шоковому воздействию повышенных концентраций алюминия. Выявлено влияние различных концентраций на жизнедеятельность растений: концентрация хлорида алюминия 66 мМ оказывала слабое токсическое действие на образцы R. sativus, замедляя отрастание корней; концентрация 83 мМ оказалась в высокой степени дифференцирующей для редиса и в меньшей – для редьки; концентрация 99 мМ полностью ингибировала дальнейший рост корней у 13.0 % образцов редиса и 7.3 % редьки и обладала высоко повреждающим эффектом. Концентрация AlCl3 · 6Н2О 99 мМ позволила выделить наиболее высокотолерантные образцы редиса и редьки, которые происходят из стран с широким распространением кислых почв. В результате исследований широкого разнообразия мировой коллекции определена внутривидовая изменчивость редиса и редьки на ранних этапах вегетации и идентифицированы контрастные по устойчивости к алюминию генотипы. Мы рекомендуем концентрацию 83 мМ AlCl3 · 6Н2О для скрининга алюмоустойчивости образцов редиса, а концентрацию 99 мМ – для образцов редьки. Разработанный нами модифицированный метод предлагается в качестве экспресс-диагностики алюмотолерантности для быстрого скрининга широкого спектра генотипов R. sativus и последующего изучения контрастных форм при более длительном выращивании растений в гидропонной культуре (включая элементный анализ корней и побегов, контрастных по устойчивости образцов), а также реакций растений в почвенных условиях.

Об авторах

А. Б. Курина
Федеральный исследовательский центр Всероссийский институт генетических ресурсов растений им. Н.И. Вавилова (ВИР)
Россия
Санкт-Петербург


И. А. Косарева
Федеральный исследовательский центр Всероссийский институт генетических ресурсов растений им. Н.И. Вавилова (ВИР)
Россия
Санкт-Петербург


А. М. Артемьева
Федеральный исследовательский центр Всероссийский институт генетических ресурсов растений им. Н.И. Вавилова (ВИР)
Россия
Санкт-Петербург


Список литературы

1. Anas A., Yoshida T. Heritability and genetic correlation of Al-tolerance with several agronomic characters in sorghum assessed by hematoxylin staining. Plant Prod. Sci. 2004;7:280-282.

2. Aniol A. Metody okreslaniu tolerancinosci zboz na toksyczne dzialanie jonow glinu. Biul. Inst. Hodowly i Aklimat. Roslin. 1981; 143:3-14. (in Polish)

3. Aniol A. The aluminum tolerance in wheat. In: Plant Breeding: Theories, Achievements and Problems: Proc. Int. conf. DotnuvaAkademija, Lithunia, 1997;14-22.

4. Aniol A., Gustafson P. Chromosome location of genes controlling aluminum tolerance in wheat, rye and triticale. Can. J. Genet. Cytol. 1984;26(6):701-705. DOI 10.1139/g84-111.

5. Awasthi J.P., Saha B., Regon P., Sahoo S., Chowra U., Pradhan A., Roy А., Panda S.K. Morpho­physiological analysis of tolerance to aluminum toxicity in rice varieties of North East India. PLoS One. 2017;12(4). DOI 10.1371/journal.pone.0176357.

6. Baier A.C., Somers D.J., Gustafson J.P. Aluminum tolerance in wheat: correlating hydroponic evaluations with field and soil performances. Plant Breeding. 1995;114:291-296.

7. Batalova G.A., Lisitsyn E.M. On the breeding of oats for resistance to edaphic stress. Selektsiya i Semenovodstvo = Breeding and Seed Industry. 2002;2:17-19. (in Russian)

8. Bunin M.S., Esikawa X. Genetic resources of the Japanese radish subspecies daikon and its introduction in northern regions of Eurasia. Selskokhozyaystvennaya Biologiya = Agricultural Biology. 1993;1:19-32. (in Russian)

9. Burba U., Mackowiak W., Paizert K., Budzianowski G. Tolerancja odmian i rodow pszenzyta ozimego hodowli ZDHAR Malyszyn na niskie рН i wysokie stezenie jonow glinu. Biul. Inst. Hodowli i Aklimat. Roslin. 1995;195-196:131-136. (in Polish)

10. Campbell L.G., Snow A.A. Can feral weeds evolve from cultivated radish (Raphanus sativus, Brassicaceae)? Am. J. Bot. 2009;96: 498-506. DOI 10.3732/ajb.0800054.

11. Cancado G.M.A., Martins P.R., Parentoni S.N., Oliveira A.B., Lopes M.A. Assessment of phenotypic indexes for aluminum tolerance in maize using nutrient solution. In: Proc. Plant & Animal Genome VII Conference, San Diego, СА, 1999;271.

12. Che J., Tsutsui T., Yokosho K., Yamaji N., Ma J.F. Functional characterization of an aluminum (Al)-inducible transcription factor, ART2, revealed a different pathway for Al tolerance in rice. New Phytol. 2018;220(1):209-218. DOI 10.1111/nph.15252.

13. Collins N.C., Shirley N.J., Saeed M., Pallotta M., Gustafson J.P. An ALMT1 gene cluster controlling aluminum tolerance at the Alt4 locus of rye (Secale cereale L). Genetics. 2008;179(1):669- 682. DOI 10.1534/genetics.107.083451.

14. Delhaize E., Ryan P.R., Hebb D.M., Yamamoto Y., Sasaki T., Matsumoto H. Engineering high-level aluminum tolerance in barley with the ALMT1 gene. Proc. Natl. Acad. Sci. USA. 2004; 101(42):15249-15254. DOI 10.1073/pnas.0406258101.

15. Ebbs S.D., Kochian L.V. Toxicity of zinc and copper to Brassica species: implications for phytoremediation. J. Environ. Qual. 1997; 5:776-781. DOI 10.2134/jeq1997.00472425002600030026x.

16. Ebbs S.D., Lasat M.M., Brady D.J., Cornish J., Gordon R., Kochian L.V. Phytoextraction of cadmium and zinc from contaminated soil. J. Environ. Qual. 1997;26:1424-1430. DOI 10.2134/jeq1997.00472425002600050032x.

17. Elizarieva E.N., Yanbaev Y.A., Redkina N.N., Kudashkina N.V., Baykov A.G., Smirnova A.P. Influence of some heavy metals compounds on the process of radish sprouts formation. Sovremennye Problemy Nauki i Obrazovaniya = Modern Problems of Science and Education. 2017;6. (in Russian)

18. Fitzpatrick E.A. An Introduction to Soil Science. New York: Longman Scientific and Technical, 1986;2­55.

19. Foy C.D. Tolerance of durum wheat lines to an acid, aluminumtoxic subsoil. J. Plant Nutr. 1996;19:1381-1394.

20. Gorelova S.V., Gins M.S., Ermakova E.V., Pestsov G.V., Frontasieva M.V. Varietal specificity of the accumulation of elements from soils in daikon. In: New and Non-traditional Plants and Prospects for Their Use: Proceedings of the VI Int. Symp., Puschino, June 13–17, 2005. Moscow, 2005;3:75-78. (in Russian)

21. Gruber B.D., Ryan P.R., Richardson A.E., Tyerman S.D., Ramesh S., Hebb D.M., Howitt S.M., Delhaize E. HvALMT1 from barley is involved in the transport of organic anions. J. Exp. Bot. 2010;61(5):1455-1467. DOI 10.1093/jxb/erq023.

22. Gupta N., Gaurav S.S. Aluminium toxicity and resistance in wheat genotypes. European J. Biotechnol. Biosci. 2014;2(4):26-29.

23. Hammer Ø., Harper D.A.T., Ryan P.D. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001;4(1):4.

24. Hanson W.D., Kamprath E.J. Selection for aluminum tolerance in soybeans based on seedling-root growth. Agron. J. 1979;71(4): 581-586.

25. Hoekenga O.A., Maron L.G., Piñeros M.A., Cancado G.M.A., Shaff J., Kobayashi Y., Ryan P.R., Dong B., Delhaize E., Sasaki T., Matsumoto H., Yamamoto Y., Koyama H., Kochian L.V. AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2006;103(25):9738-9743. DOI 10.1073/pnas.0602868103.

26. Huang C.F., Yamaji N., Chen Z., Ma J.F. A tonoplast-localized half­size ABC transporter is required for internal detoxification of aluminum in rice. Plant J. 2012;69(5):857-867. DOI 10.1111/j.1365-313X.2011.04837.x.

27. Huang S., Gao J., You J. Identification of STOP1­like proteins associated with aluminum tolerance in sweet sorghum (Sorghum bicolor L.). Front. Plant Sci. 2018;9:258. DOI 10.3389/fpls.2018.00258.

28. Kabata-Pendias A. Trace Elements in Soils and Plants. Fourth Edition. Boca Raton, FL: CRC Press, 2010. DOI 10.1201/b10158.

29. Klimashevskiy E.L. The Genetic View of the Mineral Nutrition of Plants. Moscow, 1991. (in Russian)

30. Kochian L.V., Hoekenga O.A., Pineros M.A. How do crop plants tolerate acid soils? Mechanisms of aluminium tolerance and phosphorus efficiency. Annu. Rev. Plant Biol. 2004;55:459-493.

31. Kochian L.V., Piñeros M.A., Hoekenga O.A. The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. Plant Soil. 2005;274:175-195.

32. Kochian L.V., Piñeros M.A., Liu J., Magalhaes J.V. Plant adaptation to acid soils: the molecular basis for crop aluminum resistance. Annu. Rev. Plant Biol. 2015;66:571-598. DOI 10.1146/annurev-arplant-043014-114822.

33. Kosareva I.A. The study of crops and wild relatives collections for signs of resistance to toxic elements of acid soils. Trudy po Prikladnoi Botanike, Genetike i Selektsii = Proceedings on Applied Botany, Genetics and Breeding. 2012;170:35-45. (in Russian)

34. Kosareva I.A., Davydova G.V., Semenova E.V. Test of Acid Tolerance in Cereal Crops: Methodological Guidelines. St. Petersburg, 1995. (in Russian)

35. Kosareva I.A., Semenova E.V. Aluminum tolerance in Aegilops species. In: Int. conf. “Problems of Plant Physiology in Northern Regions”. Petrozavodsk, June 15–18, 2004. Petrozavodsk, 2004; 98. (in Russian)

36. Kumar P.B., Dushenkov V., Motto H., Raskin I. Phytoextraction: the use of plants to remove heavy metals from soils. Environ. Sci. Technol. 1995;29:1232-1238. DOI 10.1021/es00005a014.

37. Kurina A.B., Artemyeva A.M. Biological features of radish and small radish (Raphanus sativus L.) accessions of the VIR collection during the summer growing period in the conditions of the Leningrad region. Izvestiya Sankt­Peterburgskogo Gosudarstvennogo Agrarnogo Universiteta = News of St. Petersburg State Agrarian University. 2017;1(46):25-31. (in Russian)

38. Kurina A.B., Artemyeva A.M. Trait­specific collection of Raphanus sativus L. at VIR. In: Book of abstracts of Int. conf. “125 Years of Applied Botany in Russia”, 25–28 Nov. 2019. St. Petersburg, Russia, 2019;155. DOI 10.30901/978-5-907145-39-9. (in Russian)

39. Kurina A.B., Khmelinskaya T.V., Artemyeva A.M. Genetic diversity of VIR collections of the Raphanus sativus L. (small radish and radish). Ovoshchi Rossii = Vegetable Crops of Russia. 2017;5(38):9-13. DOI 10.18619/2072-9146-2017-5-9-13. (in Russian)

40. Kurina A.B., Kornyukhin D.L., Artemyeva A.M. Genetic diversity and biochemical value of root cabbage crops (Brassicaceae Burnett). Vestnik NGAU = Bulletin of NSAU. 2018;4(49):81-92. DOI 10.31677/2072-6724-2018-49-4-81-92. (in Russian)

41. Ligaba A., Katsuhara M., Ryan P.R., Shibasaka M., Matsumoto H. The BnALMT1 and BnALMT2 genes from rape encode aluminum-activated malate transporters that enhance the aluminum resistance of plant cells. Plant Physiol. 2006;142(3):1294-1303. DOI 10.1104/pp.106.085233.

42. Ligaba A., Maron L., Shaff J., Kochian L., Piñeros M. Maize ZmALMT2 is a root anion transporter that mediates constitutive root malate efflux. Plant Cell Environ. 2012;35(7):1185-1200. DOI 10.1111/j.1365-3040.2011.02479.x.

43. Lin-Tong Y., Yi-Ping Q., Huan-Xin J., Li-Song C. Roles of organic acid anion secretion in aluminium tolerance of higher plants. BioMed Res. Int. 2013;16. DOI 10.1155/2013/173682.

44. Lisitsyn E.M. The influence of edaphic stresses on the possible results of crop introduction. In: The Introduction of Agricultural Plants and its Significance for Agriculture in the North­East of Russia: Proc. scientific and practical conf. Kirov, July 8–9, 1999. Kirov, 1999;140-142. (in Russian)

45. Lisitsyn E.M., Amunova O.S. Genetic variability of spring common wheat varieties in aluminum tolerance. Russ. J. Genet.: Appl. Res. 2015;5:48-54. DOI 10.1134/S2079059715010050.

46. Liu J., Piñeros M.A., Kochian L.V. The role of aluminum sensing and signaling in plant aluminum resistance. J. Integr. Plant Biol. 2014;56(3):221-230. DOI 10.1111/jipb.12162.

47. Ma J.F. Syndrome of aluminum toxicity and diversity of aluminum resistance in higher plants. Int. Rev. Cytol. 2007;264:225-252. DOI 10.1016/S0074-7696(07)64005-4.

48. Ma J.F., Chen Z.C., Shen R.F. Molecular mechanisms of Al tolerance in gramineous plants. Plant Soil. 2014;381:1-12. DOI 10.1007/s11104-014-2073-1.

49. Magalhaes J.V., Liu J., Guimaraes C.T., Lana U.G.P., Alves V.M.C., Wang Y.H., Schaffert R.E., Hoekenga O.A., Pineros M.A., Shaff J.E., Klein P.E., Carneiro N.P., Coelho C.M., Trick H.N., Kochian L.V. A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat. Genet. 2007;39(9):1156-1161.

50. McNeilly N. A rapid method for screening barley for aluminum tolerance. Euphytica. 1982;31(1):237-239.

51. Melo J.O., Martins L.G., Barros B.A., Pimenta M.R., Lana U.G., Duarte C.E., Pastina M.M., Guimaraes C.T., Schaffert R.E., Kochian L.V., Fontes E.P., Magalhaes J.V. Repeat variants for the SbMATE transporter protect sorghum roots from aluminum toxicity by transcriptional interplay in cis and trans. Proc. Natl. Acad. Sci. USA. 2019;116(1):313-318. DOI 10.1073/pnas.1808400115.

52. Ngo L.K., Pinch B.M., Bennett W.W., Teasdale P.R., Jolley D.F. Assessing the uptake of arsenic and antimony from contaminated soil by radish (Raphanus sativus) using DGT and selective extractions. Environ. Pollut. 2016;216:104-114. DOI 10.1016/j.envpol.2016.05.027.

53. Peng W., Wu W., Peng J., Li J., Lin Y., Wang Y., Tian J., Sun L., Liang C., Liao H. Characterization of the soybean GmALMT family genes and the function of GmALMT5 in response to phosphate starvation. J. Integr. Plant Biol. 2018;60:216-231. DOI 10.1111/jipb.12604.

54. Pereira J.F., Zhou G., Delhaize E., Richardson T., Zhou M., Ryan P.R. Engineering greater aluminium resistance in wheat by over-expressing TaALMT1. Ann. Bot. 2010;106(1):205-214. DOI 10.1093/aob/mcq058.

55. Raj J., Jeyanthi L.R. Phytoremediation of aluminium and lead using Raphanus sativus, Vigna radiata and Cicer arietinum. J. Chem. Pharm. Res. 2014;6(5):1148-1152.

56. Roy A.K., Sharma A., Talukder G. Some aspects of aluminum toxicity in plants. Bot. Rev. 1988;54(2):145-178. Shebalina M.A., Sazonova L.V. The Сultural Flora of the USSR. Vol. 18. Root Plants. Leningrad: Agropromizdat Publ., 1985. (in Russian)

57. Sokolova L.G., Zorina S.Y., Belousova E.N. Zonal cultivars of field crops as a reserve for the phytoremediation of fluorides polluted soils. Int. J. Phytoremediation. 2019;21(6):577-582. DOI 10.1080/15226514.2018.1540545.

58. Suhoverkova V.E. Soil acidity: trends and control. Zhurnal Agrobizness = Journal Agribusiness. 2015;6(34):60-62. (in Russian)

59. Sun X., Xu L., Wang Y., Luo X., Zhu X., Kinuthia K.B., Nie Sh., Feng H., Li Ch., Liu L. Transcriptome-based gene expression profiling identifies differentially expressed genes critical for salt stress response in radish (Raphanus sativus L.). Plant Cell Rep. 2016;35(2):329-346. DOI 10.1007/s00299-015-1887-5.

60. Vavilov N.I. The Doctrine of the Origin of Cultivated Plants after Darwin. Selected Works. Vol. 5. Moscow; Leningrad, 1965. (in Russian)

61. Vishnyakova M.A., Semenova E.V., Kosareva I.A., Kravchuk N.D., Loskutov S.I., Puhal’skii I.V., Shaposhnikov A.I., Sazonova A.L., Belimov A.A. Method for rapid assessment of aluminum tolerance of pea (Pisum sativum L.). Selskokhozyaystvennaya Biologiya = Agricultural Biology. 2015;50(3):353-360. DOI 10.15389/agrobiology.2015.3.353eng.

62. Vorob’ev M. Liming of acidic soils in Russia: problems and current approaches. 2019. Available at: https://glavagronom.ru/articles/Izvestkovanie-kislyh-pochv-v-Rossii-problemy-i-aktualnyepodhody (in Russian)

63. Wang D., Wen F., Xu Ch., Tang Y., Luo X. The uptake of Cs and Sr from soil to radish (Raphanus sativus L.) – potential for phytoextraction and remediation of contaminated soils. J. Environ. Radioact. 2012;110:78-83. DOI 10.1016/j.jenvrad.2012.01.028.

64. Wang H., Chen R.F., Iwashita T., Shen R.F., Ma J.F. Physiological characterization of aluminum tolerance and accumulation in tartary and wild buckwheat. New Phytol. 2015;205(1):273-279. DOI 10.1111/nph.13011.

65. Xu L., Wang Y., Zhang F., Tang M., Chen Y., Wang J., Karanja B.K., Luo X., Zhang W., Liu L. Dissecting root proteome changes reveals new insight into cadmium stress response in radish (Raphanus sativus L.). Plant Cell Physiol. 2017;58(11):1901-1913. DOI 10.1093/pcp/pcx131.

66. Yokosho K., Yamaji N., Ma J.F. Isolation and characterisation of two MATE genes in rye. Funct. Plant Biol. 2010;37(4):296-303. DOI 10.1071/FP09265.

67. Zhang K., Zhou Q. Ecological toxicity of aluminum-based coagulant on representative corps in neutral environment. J. Appl. Ecol. 2005; 16(11):2173-2177.


Просмотров: 69


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-0462 (Print)
ISSN 2500-3259 (Online)