Genetic diversity of VIR Raphanus sativus L. collections on aluminum tolerance
https://doi.org/10.18699/VJ20.655
Abstract
Radish and small radish (Raphanus sativus L.) are popular and widely cultivated root vegetables in the world, which occupy an important place in human nutrition. Edaphic stressors have a significant impact on their productivity and quality. The main factor determining the phytotoxicity of acidic soils is the increased concentration of mobile aluminum ions in the soil solution. The accumulation of aluminum in root tissues disrupts the processes of cell division, initiation and growth of the lateral roots, the supply of plants with minerals and water. The study of intraspecific variation in aluminum resistance of R. sativus is an important stage for the breeding of these crops. The purpose of this work was to study the genetic diversity of R. sativus crops including 109 accessions of small radish and radish of various ecological and geographical origin, belonging to 23 types, 14 varieties of European, Chinese and Japanese subspecies on aluminum tolerance. In the absence of a rapid assessment methodology specialized for the species studied, a method is used to assess the aluminum resistance of cereals using an eriochrome cyanine R dye, which is based on the recovery or absence of restoration of mitotic activity of the seedlings roots subjected to shock exposure to aluminum. The effect of various concentrations on the vital activity of plants was revealed: a 66-mM concentration of AlCl3 · 6Н2О had a weak toxic effect on R. sativus accessions slowing down root growth; 83 mM contributed to a large differentiation of the small radish accessions and to a lesser extent for radish; 99 mM inhibited further root growth in 13.0 % of small radish accessions and in 7.3 % of radish and had a highly damaging effect. AlCl3 · 6Н2О at a concentration of 99 mM allowed us to identify the most tolerant small radish and radish accessions that originate from countries with a wide distribution of acidic soils. In a result, it was possible to determine the intraspecific variability of small radish and radish plants in the early stages of vegetation and to identify genotypes that are contrasting in their resistance to aluminum. We recommend the AlCl3 · 6Н2О concentration of 83 mM for screening the aluminum resistance of small radish and 99 mM for radish. The modified method that we developed is proposed as a rapid diagnosis of aluminum tolerance for the screening of a wide range of R. sativus genotypes and a subsequent study of contrasting forms during a longer cultivation of plants in hydroponic culture (including elemental analysis of roots and shoots, contrasting in resistance of accessions) as well as reactions of plants in soil conditions.
Keywords
About the Authors
A. B. KurinaRussian Federation
St. Petersburg
I. A. Kosareva
Russian Federation
St. Petersburg
A. M. Artemyeva
Russian Federation
St. Petersburg
References
1. Anas A., Yoshida T. Heritability and genetic correlation of Al-tolerance with several agronomic characters in sorghum assessed by hematoxylin staining. Plant Prod. Sci. 2004;7:280-282.
2. Aniol A. Metody okreslaniu tolerancinosci zboz na toksyczne dzialanie jonow glinu. Biul. Inst. Hodowly i Aklimat. Roslin. 1981; 143:3-14. (in Polish)
3. Aniol A. The aluminum tolerance in wheat. In: Plant Breeding: Theories, Achievements and Problems: Proc. Int. conf. DotnuvaAkademija, Lithunia, 1997;14-22.
4. Aniol A., Gustafson P. Chromosome location of genes controlling aluminum tolerance in wheat, rye and triticale. Can. J. Genet. Cytol. 1984;26(6):701-705. DOI 10.1139/g84-111.
5. Awasthi J.P., Saha B., Regon P., Sahoo S., Chowra U., Pradhan A., Roy А., Panda S.K. Morphophysiological analysis of tolerance to aluminum toxicity in rice varieties of North East India. PLoS One. 2017;12(4). DOI 10.1371/journal.pone.0176357.
6. Baier A.C., Somers D.J., Gustafson J.P. Aluminum tolerance in wheat: correlating hydroponic evaluations with field and soil performances. Plant Breeding. 1995;114:291-296.
7. Batalova G.A., Lisitsyn E.M. On the breeding of oats for resistance to edaphic stress. Selektsiya i Semenovodstvo = Breeding and Seed Industry. 2002;2:17-19. (in Russian)
8. Bunin M.S., Esikawa X. Genetic resources of the Japanese radish subspecies daikon and its introduction in northern regions of Eurasia. Selskokhozyaystvennaya Biologiya = Agricultural Biology. 1993;1:19-32. (in Russian)
9. Burba U., Mackowiak W., Paizert K., Budzianowski G. Tolerancja odmian i rodow pszenzyta ozimego hodowli ZDHAR Malyszyn na niskie рН i wysokie stezenie jonow glinu. Biul. Inst. Hodowli i Aklimat. Roslin. 1995;195-196:131-136. (in Polish)
10. Campbell L.G., Snow A.A. Can feral weeds evolve from cultivated radish (Raphanus sativus, Brassicaceae)? Am. J. Bot. 2009;96: 498-506. DOI 10.3732/ajb.0800054.
11. Cancado G.M.A., Martins P.R., Parentoni S.N., Oliveira A.B., Lopes M.A. Assessment of phenotypic indexes for aluminum tolerance in maize using nutrient solution. In: Proc. Plant & Animal Genome VII Conference, San Diego, СА, 1999;271.
12. Che J., Tsutsui T., Yokosho K., Yamaji N., Ma J.F. Functional characterization of an aluminum (Al)-inducible transcription factor, ART2, revealed a different pathway for Al tolerance in rice. New Phytol. 2018;220(1):209-218. DOI 10.1111/nph.15252.
13. Collins N.C., Shirley N.J., Saeed M., Pallotta M., Gustafson J.P. An ALMT1 gene cluster controlling aluminum tolerance at the Alt4 locus of rye (Secale cereale L). Genetics. 2008;179(1):669- 682. DOI 10.1534/genetics.107.083451.
14. Delhaize E., Ryan P.R., Hebb D.M., Yamamoto Y., Sasaki T., Matsumoto H. Engineering high-level aluminum tolerance in barley with the ALMT1 gene. Proc. Natl. Acad. Sci. USA. 2004; 101(42):15249-15254. DOI 10.1073/pnas.0406258101.
15. Ebbs S.D., Kochian L.V. Toxicity of zinc and copper to Brassica species: implications for phytoremediation. J. Environ. Qual. 1997; 5:776-781. DOI 10.2134/jeq1997.00472425002600030026x.
16. Ebbs S.D., Lasat M.M., Brady D.J., Cornish J., Gordon R., Kochian L.V. Phytoextraction of cadmium and zinc from contaminated soil. J. Environ. Qual. 1997;26:1424-1430. DOI 10.2134/jeq1997.00472425002600050032x.
17. Elizarieva E.N., Yanbaev Y.A., Redkina N.N., Kudashkina N.V., Baykov A.G., Smirnova A.P. Influence of some heavy metals compounds on the process of radish sprouts formation. Sovremennye Problemy Nauki i Obrazovaniya = Modern Problems of Science and Education. 2017;6. (in Russian)
18. Fitzpatrick E.A. An Introduction to Soil Science. New York: Longman Scientific and Technical, 1986;255.
19. Foy C.D. Tolerance of durum wheat lines to an acid, aluminumtoxic subsoil. J. Plant Nutr. 1996;19:1381-1394.
20. Gorelova S.V., Gins M.S., Ermakova E.V., Pestsov G.V., Frontasieva M.V. Varietal specificity of the accumulation of elements from soils in daikon. In: New and Non-traditional Plants and Prospects for Their Use: Proceedings of the VI Int. Symp., Puschino, June 13–17, 2005. Moscow, 2005;3:75-78. (in Russian)
21. Gruber B.D., Ryan P.R., Richardson A.E., Tyerman S.D., Ramesh S., Hebb D.M., Howitt S.M., Delhaize E. HvALMT1 from barley is involved in the transport of organic anions. J. Exp. Bot. 2010;61(5):1455-1467. DOI 10.1093/jxb/erq023.
22. Gupta N., Gaurav S.S. Aluminium toxicity and resistance in wheat genotypes. European J. Biotechnol. Biosci. 2014;2(4):26-29.
23. Hammer Ø., Harper D.A.T., Ryan P.D. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001;4(1):4.
24. Hanson W.D., Kamprath E.J. Selection for aluminum tolerance in soybeans based on seedling-root growth. Agron. J. 1979;71(4): 581-586.
25. Hoekenga O.A., Maron L.G., Piñeros M.A., Cancado G.M.A., Shaff J., Kobayashi Y., Ryan P.R., Dong B., Delhaize E., Sasaki T., Matsumoto H., Yamamoto Y., Koyama H., Kochian L.V. AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2006;103(25):9738-9743. DOI 10.1073/pnas.0602868103.
26. Huang C.F., Yamaji N., Chen Z., Ma J.F. A tonoplast-localized halfsize ABC transporter is required for internal detoxification of aluminum in rice. Plant J. 2012;69(5):857-867. DOI 10.1111/j.1365-313X.2011.04837.x.
27. Huang S., Gao J., You J. Identification of STOP1like proteins associated with aluminum tolerance in sweet sorghum (Sorghum bicolor L.). Front. Plant Sci. 2018;9:258. DOI 10.3389/fpls.2018.00258.
28. Kabata-Pendias A. Trace Elements in Soils and Plants. Fourth Edition. Boca Raton, FL: CRC Press, 2010. DOI 10.1201/b10158.
29. Klimashevskiy E.L. The Genetic View of the Mineral Nutrition of Plants. Moscow, 1991. (in Russian)
30. Kochian L.V., Hoekenga O.A., Pineros M.A. How do crop plants tolerate acid soils? Mechanisms of aluminium tolerance and phosphorus efficiency. Annu. Rev. Plant Biol. 2004;55:459-493.
31. Kochian L.V., Piñeros M.A., Hoekenga O.A. The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. Plant Soil. 2005;274:175-195.
32. Kochian L.V., Piñeros M.A., Liu J., Magalhaes J.V. Plant adaptation to acid soils: the molecular basis for crop aluminum resistance. Annu. Rev. Plant Biol. 2015;66:571-598. DOI 10.1146/annurev-arplant-043014-114822.
33. Kosareva I.A. The study of crops and wild relatives collections for signs of resistance to toxic elements of acid soils. Trudy po Prikladnoi Botanike, Genetike i Selektsii = Proceedings on Applied Botany, Genetics and Breeding. 2012;170:35-45. (in Russian)
34. Kosareva I.A., Davydova G.V., Semenova E.V. Test of Acid Tolerance in Cereal Crops: Methodological Guidelines. St. Petersburg, 1995. (in Russian)
35. Kosareva I.A., Semenova E.V. Aluminum tolerance in Aegilops species. In: Int. conf. “Problems of Plant Physiology in Northern Regions”. Petrozavodsk, June 15–18, 2004. Petrozavodsk, 2004; 98. (in Russian)
36. Kumar P.B., Dushenkov V., Motto H., Raskin I. Phytoextraction: the use of plants to remove heavy metals from soils. Environ. Sci. Technol. 1995;29:1232-1238. DOI 10.1021/es00005a014.
37. Kurina A.B., Artemyeva A.M. Biological features of radish and small radish (Raphanus sativus L.) accessions of the VIR collection during the summer growing period in the conditions of the Leningrad region. Izvestiya SanktPeterburgskogo Gosudarstvennogo Agrarnogo Universiteta = News of St. Petersburg State Agrarian University. 2017;1(46):25-31. (in Russian)
38. Kurina A.B., Artemyeva A.M. Traitspecific collection of Raphanus sativus L. at VIR. In: Book of abstracts of Int. conf. “125 Years of Applied Botany in Russia”, 25–28 Nov. 2019. St. Petersburg, Russia, 2019;155. DOI 10.30901/978-5-907145-39-9. (in Russian)
39. Kurina A.B., Khmelinskaya T.V., Artemyeva A.M. Genetic diversity of VIR collections of the Raphanus sativus L. (small radish and radish). Ovoshchi Rossii = Vegetable Crops of Russia. 2017;5(38):9-13. DOI 10.18619/2072-9146-2017-5-9-13. (in Russian)
40. Kurina A.B., Kornyukhin D.L., Artemyeva A.M. Genetic diversity and biochemical value of root cabbage crops (Brassicaceae Burnett). Vestnik NGAU = Bulletin of NSAU. 2018;4(49):81-92. DOI 10.31677/2072-6724-2018-49-4-81-92. (in Russian)
41. Ligaba A., Katsuhara M., Ryan P.R., Shibasaka M., Matsumoto H. The BnALMT1 and BnALMT2 genes from rape encode aluminum-activated malate transporters that enhance the aluminum resistance of plant cells. Plant Physiol. 2006;142(3):1294-1303. DOI 10.1104/pp.106.085233.
42. Ligaba A., Maron L., Shaff J., Kochian L., Piñeros M. Maize ZmALMT2 is a root anion transporter that mediates constitutive root malate efflux. Plant Cell Environ. 2012;35(7):1185-1200. DOI 10.1111/j.1365-3040.2011.02479.x.
43. Lin-Tong Y., Yi-Ping Q., Huan-Xin J., Li-Song C. Roles of organic acid anion secretion in aluminium tolerance of higher plants. BioMed Res. Int. 2013;16. DOI 10.1155/2013/173682.
44. Lisitsyn E.M. The influence of edaphic stresses on the possible results of crop introduction. In: The Introduction of Agricultural Plants and its Significance for Agriculture in the NorthEast of Russia: Proc. scientific and practical conf. Kirov, July 8–9, 1999. Kirov, 1999;140-142. (in Russian)
45. Lisitsyn E.M., Amunova O.S. Genetic variability of spring common wheat varieties in aluminum tolerance. Russ. J. Genet.: Appl. Res. 2015;5:48-54. DOI 10.1134/S2079059715010050.
46. Liu J., Piñeros M.A., Kochian L.V. The role of aluminum sensing and signaling in plant aluminum resistance. J. Integr. Plant Biol. 2014;56(3):221-230. DOI 10.1111/jipb.12162.
47. Ma J.F. Syndrome of aluminum toxicity and diversity of aluminum resistance in higher plants. Int. Rev. Cytol. 2007;264:225-252. DOI 10.1016/S0074-7696(07)64005-4.
48. Ma J.F., Chen Z.C., Shen R.F. Molecular mechanisms of Al tolerance in gramineous plants. Plant Soil. 2014;381:1-12. DOI 10.1007/s11104-014-2073-1.
49. Magalhaes J.V., Liu J., Guimaraes C.T., Lana U.G.P., Alves V.M.C., Wang Y.H., Schaffert R.E., Hoekenga O.A., Pineros M.A., Shaff J.E., Klein P.E., Carneiro N.P., Coelho C.M., Trick H.N., Kochian L.V. A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat. Genet. 2007;39(9):1156-1161.
50. McNeilly N. A rapid method for screening barley for aluminum tolerance. Euphytica. 1982;31(1):237-239.
51. Melo J.O., Martins L.G., Barros B.A., Pimenta M.R., Lana U.G., Duarte C.E., Pastina M.M., Guimaraes C.T., Schaffert R.E., Kochian L.V., Fontes E.P., Magalhaes J.V. Repeat variants for the SbMATE transporter protect sorghum roots from aluminum toxicity by transcriptional interplay in cis and trans. Proc. Natl. Acad. Sci. USA. 2019;116(1):313-318. DOI 10.1073/pnas.1808400115.
52. Ngo L.K., Pinch B.M., Bennett W.W., Teasdale P.R., Jolley D.F. Assessing the uptake of arsenic and antimony from contaminated soil by radish (Raphanus sativus) using DGT and selective extractions. Environ. Pollut. 2016;216:104-114. DOI 10.1016/j.envpol.2016.05.027.
53. Peng W., Wu W., Peng J., Li J., Lin Y., Wang Y., Tian J., Sun L., Liang C., Liao H. Characterization of the soybean GmALMT family genes and the function of GmALMT5 in response to phosphate starvation. J. Integr. Plant Biol. 2018;60:216-231. DOI 10.1111/jipb.12604.
54. Pereira J.F., Zhou G., Delhaize E., Richardson T., Zhou M., Ryan P.R. Engineering greater aluminium resistance in wheat by over-expressing TaALMT1. Ann. Bot. 2010;106(1):205-214. DOI 10.1093/aob/mcq058.
55. Raj J., Jeyanthi L.R. Phytoremediation of aluminium and lead using Raphanus sativus, Vigna radiata and Cicer arietinum. J. Chem. Pharm. Res. 2014;6(5):1148-1152.
56. Roy A.K., Sharma A., Talukder G. Some aspects of aluminum toxicity in plants. Bot. Rev. 1988;54(2):145-178. Shebalina M.A., Sazonova L.V. The Сultural Flora of the USSR. Vol. 18. Root Plants. Leningrad: Agropromizdat Publ., 1985. (in Russian)
57. Sokolova L.G., Zorina S.Y., Belousova E.N. Zonal cultivars of field crops as a reserve for the phytoremediation of fluorides polluted soils. Int. J. Phytoremediation. 2019;21(6):577-582. DOI 10.1080/15226514.2018.1540545.
58. Suhoverkova V.E. Soil acidity: trends and control. Zhurnal Agrobizness = Journal Agribusiness. 2015;6(34):60-62. (in Russian)
59. Sun X., Xu L., Wang Y., Luo X., Zhu X., Kinuthia K.B., Nie Sh., Feng H., Li Ch., Liu L. Transcriptome-based gene expression profiling identifies differentially expressed genes critical for salt stress response in radish (Raphanus sativus L.). Plant Cell Rep. 2016;35(2):329-346. DOI 10.1007/s00299-015-1887-5.
60. Vavilov N.I. The Doctrine of the Origin of Cultivated Plants after Darwin. Selected Works. Vol. 5. Moscow; Leningrad, 1965. (in Russian)
61. Vishnyakova M.A., Semenova E.V., Kosareva I.A., Kravchuk N.D., Loskutov S.I., Puhal’skii I.V., Shaposhnikov A.I., Sazonova A.L., Belimov A.A. Method for rapid assessment of aluminum tolerance of pea (Pisum sativum L.). Selskokhozyaystvennaya Biologiya = Agricultural Biology. 2015;50(3):353-360. DOI 10.15389/agrobiology.2015.3.353eng.
62. Vorob’ev M. Liming of acidic soils in Russia: problems and current approaches. 2019. Available at: https://glavagronom.ru/articles/Izvestkovanie-kislyh-pochv-v-Rossii-problemy-i-aktualnyepodhody (in Russian)
63. Wang D., Wen F., Xu Ch., Tang Y., Luo X. The uptake of Cs and Sr from soil to radish (Raphanus sativus L.) – potential for phytoextraction and remediation of contaminated soils. J. Environ. Radioact. 2012;110:78-83. DOI 10.1016/j.jenvrad.2012.01.028.
64. Wang H., Chen R.F., Iwashita T., Shen R.F., Ma J.F. Physiological characterization of aluminum tolerance and accumulation in tartary and wild buckwheat. New Phytol. 2015;205(1):273-279. DOI 10.1111/nph.13011.
65. Xu L., Wang Y., Zhang F., Tang M., Chen Y., Wang J., Karanja B.K., Luo X., Zhang W., Liu L. Dissecting root proteome changes reveals new insight into cadmium stress response in radish (Raphanus sativus L.). Plant Cell Physiol. 2017;58(11):1901-1913. DOI 10.1093/pcp/pcx131.
66. Yokosho K., Yamaji N., Ma J.F. Isolation and characterisation of two MATE genes in rye. Funct. Plant Biol. 2010;37(4):296-303. DOI 10.1071/FP09265.
67. Zhang K., Zhou Q. Ecological toxicity of aluminum-based coagulant on representative corps in neutral environment. J. Appl. Ecol. 2005; 16(11):2173-2177.