Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Алкалоиды люпина узколистного как фактор, определяющий альтернативные пути использования и селекции культуры

https://doi.org/10.18699/VJ20.656

Полный текст:

Аннотация

Люпин узколистный (Lupinus angustifolius L.) – ценная зернобобовая культура, адаптированная к широкому спектру климатических условий и имеющая непродолжительную историю доместикации. В течение многих веков его употребляли преимущественно как сидеральное растение, поскольку успех и перспективы многоцелевого использования вида зависят от его селекционного улучшения, в частности от содержания определенного уровня алкалоидов в семенах и зеленой массе. Первые сорта научной селекции были созданы в 1930-х гг., после выявления низкоалкалоидных мутантов. Производство этой культуры сдерживается нестабильной урожайностью и подверженностью болезням. Очевидно, что селекционеры имеют дело лишь с небольшой частью генофонда вида и ограниченными генетическими ресурсами, используя для получения новых сортов преимущественно низкоалкалоидные (сладкие) генотипы. Генетический потенциал вида можно задействовать эффективнее. При этом сидеральные сорта рационально создавать высокоалкалоидными (горькими), а продовольственные и кормовые за счет элиминации алкалоидов не должны терять адаптивные свойства, в том числе устойчивость к патогенам. В этом отношении продуктивной идеей представляется выведение сладко-горьких сортов, сочетающих высокое содержание алкалоидов в вегетативной массе и низкое – в семенах, чего можно добиться путем регулирования синтеза/транспорта алкалоидов в растении. В обзоре рассмотрены современное состояние использования вида в качестве сидерального, кормового, пищевого растения. Приведены сведения о количестве и качественном составе алкалоидов люпина узколистного, их прикладном значении, в частности фунгицидной, антибактериальной, инсектицидной функциях, применении отдельных алкалоидов люпина в качестве действующих начал лекарственных средств. Наряду с селекционным улучшением культуры обсуждаются возможные технологии переработки высокоалкалоидного сырья с сопутствующим извлечением ценных ингредиентов для фармацевтики. Кратко представлены сведения о геномных ресурсах вида и перспективах их использования в маркер-опосредованной селекции и при редактировании генома.

Об авторах

М. А. Вишнякова
Федеральный исследовательский центр Всероссийский институт генетических ресурсов растений им. Н.И. Вавилова (ВИР)
Россия
Санкт-Петербург


А. В. Кушнарева
Федеральный исследовательский центр Всероссийский институт генетических ресурсов растений им. Н.И. Вавилова (ВИР)
Россия
Санкт-Петербург


Т. В. Шеленга
Федеральный исследовательский центр Всероссийский институт генетических ресурсов растений им. Н.И. Вавилова (ВИР)
Россия
Санкт-Петербург


Г. П. Егорова
Федеральный исследовательский центр Всероссийский институт генетических ресурсов растений им. Н.И. Вавилова (ВИР)
Россия
Санкт-Петербург


Список литературы

1. Abbas G., Al-Harrasi A.S., Hussain H., Sattar S.A., Choudhary M.I. Identification of natural products and their derivatives as promising inhibitors of protein glycation with non-toxic nature against mouse fibroblast 3T3 cells. Int. J. Phytomed. 2017;8(4):533-539. DOI 10.5138/09750185.1924.

2. Adhikari K.N., Edwards O.R., Wang S., Ridsdill-Smith T.J., Buirchell B. The role of alkaloids in conferring aphid resistance in yellow lupin (Lupinus luteus L.). Crop Pasture Sci. 2012;63: 444-451. DOI 10.1071/CP12189.

3. Akritidou Ch.P., Boynik V.V., Blazheyevskіy N.Ye. Determination of total alkaloids in dry extracts of seeds and roots of multileafed lupine by amperometric titration method. Upravlenie, Ekonomika i Obespechenie Kachestva v Farmatsii = Management, Economics and Quality Assurance in Pharmacy. 2015;2(40):4-8. (in Russian)

4. Allen J.G. Toxins and lupinosis. In: Gladstones J.S., Atkin C.A., Hamblin J. (Eds.). Lupins as Crop Plants: Biology, Production and Utilization. CAB International, 1998;411-428.

5. Anokhina V.S. Study of the phenomenon of genetic complementation for the alkaloid content trait in compound intervarietal hybrids of forage lupine. In: Research in Theoretical and Applied Genetics. Minsk, 1975;108-112. (in Russian)

6. Anokhina V.S., Debely G.A., Konorev P.M. Lupine: Breeding. Genetics. Evolution. Minsk, 2012. (in Russian)

7. Anokhina V., Kaminskaya L., Tsibulskaya I. Lupine alkaloids: fungicidal effects. Molekulyarnaya i Prikladnaya Genetika = Molecular and Applied Genetics. 2008;8:138-142. (in Russian)

8. Barbeitos C.B.M. Towards the development of a process for lupin beans detoxification wastewater with lupanine recovery: Thesis to obtain the Master of science degree in Biological Engineering. Técnico Lisboa, 2016.

9. Berger J.D., Buirchell B., Luckett D.J., Nelson M.N. Domestication bottlenecks limit genetic diversity and constrain adaptation in narrow-leafed lupin (Lupinus angustifolius L.). Theor. Appl. Genet. 2012a;124:637-652. DOI 10.1007/s00122-011-1736-z.

10. Berger J.D., Buirchell B., Luckett D.J., Palta J.A., Ludwig C., Liu D. How has narrow-leafed lupin changed in its 1st 40 years as an industrial, broad-acre crop? A G×E-based characterization of yield-related traits in Australian cultivars. Field Crops Res. 2012b;126:152-164. DOI 10.1016/j.fcr.2011.10.014.

11. Berger J.D., Clements J.C., Nelson M.N., Kamphuis L.G., Singh K.B., Buirchell B. The essential role of genetic resources in narrow-leafed lupin improvement. Crop Pasture Sci. 2013; 64:361-373. DOI 10.1071/CP13092.

12. Berlandier F.A. Alkaloid level in narrow-leafed lupin, Lupinus angustifolius, influences green peach aphid reproductive performance. Entomol. Exp. Appl. 1996;79:19-24. DOI 10.1111/j.1570-7458.1996.tb00804.x.

13. Blaschek W., Ebel S., Hilgenfeldt U., Holzgrabe U., Reichling J., Schulz V., Barthlott W., Höltje H.-D. Hagers Enzyklopädie der Arzneistoffe und Drogen. 2016. Available at: http://www.drugbase.de/de/datenbanken/hagers-enzyklopaedie.html (Accessed March 23, 2020).

14. Boersma G.J., Pallotta M., Li C., Buirchell B.J., Sivasithamparam K., Yang H. Construction of a genetic linkage map using MFLP and identification of molecular markers linked to domestication genes in narrow-leafed lupin (Lupinus angustifolius L.). Cell. Mol. Biol. Lett. 2005;10:331-344.

15. Borisova G.G., Ermoshin A.A., Maleva M.G., Chukina N.V. Plant Biochemistry: Secondary Metabolism. Moscow: Yurait Publ., 2020. (in Russian)

16. Bunsupa S., Okada T., Saito K., Yamazaki M. An acyltransferaselike gene obtained by differential gene expression profiles of quinolizidine alkaloid-producing and non-producing cultivars of Lupinus angustifolius. Plant Biotechnol. 2011;28:89-94. DOI 10.5511/plantbiotechnology.10.1109b.

17. Bunsupa S., Yamazaki M., Saito K. Quinolizidine alkaloid biosynthesis: recent advances and future prospects. Front. Plant Sci. 2012;3:239. DOI 10.3389/fpls.2012.00239.

18. Campbell F.L., Sullivan W.N., Smith C.R. The relative toxicity of nicotine, anabasine, methyl anabasine, and lupinine for culicine mosquito larvae. J. Econ. Entomol. 1933;26(2):500-509. DOI 10.1093/jee/26.2.500.

19. Cowling W., Tarr A. Effect of genotype and environment on seed quality in sweet narrow-leafed lupin (Lupinus angustifolius L.). Aust. J. Agric. Res. 2004;55:745-751. DOI 10.1071/AR03223.

20. Dervas G., Doxastakis G., Hadjisavva-Zinoviadi S., Triantafillakos N. Lupine flour addition to wheat flour doughs and effect on rheological properties. Food Chem. 1999;66:67-73.

21. Dijkstra D.S., Linnemann A.R., van Boekel T.A. Towards sustainable production of protein-rich foods: appraisal of eight crops for Western Europe. Part II: Analysis of the technological aspects of the production chain. Crit. Rev. Food Sci. Nutr. 2003;43(5):481- 506. DOI 10.1016/j.foodchem.2005.09.088.

22. Ding Z., Chen Q., Xiong B., Cun Y., Wang H., Xu M. Angustifoline inhibits human colon cancer cell growth by inducing autophagy along with mitochondrial-mediated apoptosis, suppression of cell invasion and migration and stimulating G2/M cell cycle arrest. J. BUON. 2019;24(1):130-135.

23. Dubois O., Allanic C., Charvet C.L., Guégnard F., Février H., Théry-Koné I., Cortet J., Koch C., Bouvier F., Fassier T., Marcon D., Magnin-Robert J.B., Peineau N., Courtot E., Huau C., Meynadier A., Enguehard-Gueiffier C., Neveu C., BoudesocqueDelaye L., Sallé G. Lupin (Lupinus spp.) seeds exert anthelmintic activity associated with their alkaloid content. Sci. Rep. 2019; 9(1):9070. DOI 10.1038/s41598-019-45654-6.

24. Erdemoglu N., Ozkan S., Tosun F. Alkaloid profile and antimicrobial activity of Lupinus angustifolius L. alkaloid extract. Phytochem. Rev. 2007;6(1):197-201.

25. Evstratova L.P., Nikolaeva E.V., Bogoslovsky S.A. Influence of narrow-leaved blue lupin biomass on potato yield in natural habitat of Globodera rostochiensis Woll. Uchenye Zapiski Petrozavodskogo Gosudarstvennogo Universiteta = Scientific Notes of Petrozavodsk State University. Natural and Technical Sciences Series. 2012;8(2):30-33. (in Russian)

26. Feed Production Handbook. 5th edition revised and supplemented. Moscow: Rosselkhozakademiya Publ., 2014. (in Russian)

27. Frick K.M., Kamphuis L.G., Siddique K.H.M., Singh K.B., Foley R.C. Quinolizidine alkaloid biosynthesis in lupins and prospects for grain quality improvement. Front. Plant Sci. 2017;8: 1-12. DOI 10.3389/fpls.2017.00087.

28. Fryirs C., Eisenhauer B., Duckworth Ch. Luteins in lupins – an eye for health. In: Proc. 12th Int. Lupin Conf. Fremantle, 2008; 488-490.

29. Gao L.-L., Hane J.K., Kamphuis L.G., Foley R., Shi B.-J., Atkins C.A., Singh K.B. Development of genomic resources for the narrow-leafed lupin (Lupinus angustifolius): construction of a bacterial artificial chromosome (bac) library and bac-end sequencing. BMC Genomics. 2011;12:521. DOI 10.1186/1471-2164-12-521.

30. Gladstones J.S. Lupins in Western Australia. The grazing value of green and mature lupins. J. Agric. West. Austr. 1970:103-106.

31. Gladstones J.S. Breeding lupins in Western Australia. J. Agric. West. Austr. 1982;23:73.

32. Gladstones J.S., Atkin C.A., Hamblin J. (Eds.). Lupins as Crop Plants: Biology, Production and Utilization. CAB International, 1998.

33. Gresta F., Wink M., Prins U., Abberton M., Capraro J., Scarafoni A., Hill G. Lupins in European cropping systems. In: Legumes in Cropping Systems. CAB International, 2017;88-108. DOI 10.1079/9781780644981.0088.

34. Hackbarth J. Die Gene der Lupinenarten III. Schmalblattige Lupinen (Lupinus angustifolius L.). Z. Pflanzenzüchtung. 1957;37: 81-95.

35. Hackbarth J., Troll H.J. Lupinen als Körnerleguminosen und Futterpflanzen. In: Handbuch der Pflanzenzüchtung. 1956;IV: 1-51.

36. Hane J.K., Ming Y., Kamphuis L.G., Nelson M.N., Garg G., Atkins C.A., Bayer P.E., Bravo A., Bringans S., Cannon S., Edwards D., Foley R., Gao L.L., Harrison M.J., Huang W., Hurgobin B., Li S., Liu C.W., McGrath A., Morahan G., Murray J., Weller J., Jian J., Singh K.B. A comprehensive draft genome sequence for lupin (Lupinus angustifolius), an emerging health food: insights into plant-microbe interactions and legume evolution. Plant Biotechnol. J. 2016;15:318-330. DOI 10.1111/pbi.12615.

37. Ivashev M.N., Sergienko A.V., Lysenko T.A., Arlt A.V., Zatsepina E.E., Kuyantseva A.M., Savenko I.A., Sarkisyan K.Kh. Clinical pharmacology of antiarrhythmic medicines in training of students. Mezhdunarodnyi Zhurnal Eksperimentalnogo Obrazovaniya = International Journal of Experimental Education. 2013;1:67-70. (in Russian)

38. Jiménez-Martínez C., Hernández-Sánchez H., Alvárez-Manilla G., Robledo-Quintos N., Martínez-Herrera J., Dávila-Ortiz G. Effect of aqueous and alkaline thermal treatments on chemical composition and oligosaccharide, alkaloid and tannin contents of Lupinus campestris seeds. J. Sci. Food Agric. 2001;81: 421-428.

39. Kamel K.A., Święcicki W., Kaczmarek Z., Barzyk P. Quantitative and qualitative content of alkaloids in seeds of a narrow-leafed lupin (Lupinus angustifolius L.) collection. Genet. Resour. Crop Evol. 2016;63:711-719. DOI 10.1007/s10722-015-0278-7.

40. Kamphuis L.G., Hane J.K., Nelson M.N., Gao L., Atkins C.A., Singh K.B. Transcriptome sequencing of different narrow-leafed lupin tissue types provides a comprehensive uni-gene assembly and extensive gene-based molecular markers. Plant Biotechnol. J. 2015;13:14-25. DOI 10.1111/pbi.12229.

41. Kohajdorová Z., Karovičová J., Schmidt Š. Lupin composition and possible use in bakery – a review. Czech J. Food Sci. 2011; 29(3):203-211.

42. Korol V.F., Lakhmotkina G.N. Lupine as an important source of protein and compound feed component. Aviculture. May 11, 2016a. https://www.agbz.ru/articles/lyupin-kak-vajnyiy-istochnik-belkai-komponent-kombikorma (Accessed January 18, 2020). (in Russian)

43. Korol V.F., Lakhmotkina G.N. Lupine grain processing: new technologies. Plant Industry. April 19. 2016b. https://www.agbz.ru/ articles/pererabotka-zerna-lyupina-novyie-tehnologi (Accessed February 12, 2020). (in Russian)

44. Kozlowski R., Manys S. Coexistence and competition of natural and man-made fibres. In: Proc. of the 78th World Conference of the Textile Institute. Thessaloniki, Greece, 1997;3-52.

45. Krasilnikov V.N., Mehtiev V.S., Domoroshchenkova M.L., Demyanenko T.F., Gavrilyuk I.P., Kuznetsova L.I. Prospects for the use of protein from seeds of narrow-leaved lupine. Pishchevaya Promyshlennost = Food Industry. 2010;2:40-43. (in Russian)

46. Kroc M., Koczyk G., Kamel K.A., Czepiel K., Fedorowicz-Stroń- ska O., Krajewski P., Kosińska J., Podkowiński J., Wilczura P., Święcicki W. Transcriptome-derived investigation of biosynthesis of quinolizidine alkaloids in narrow-leafed lupin (Lupinus angustifolius L.) highlights candidate genes linked to iucundus locus. Sci. Rep. 2019;9:2231. DOI 10.1038/s41598-018-37701-5.

47. Kruglov D.S., Khanina M.A., Makarova D.L., Velichko V.V. Alkaloids: Pharmacognosy of alkaloid-bearing material. Mezhdunarodnyi Zhurnal Eksperimentalnogo Obrazovaniya = International Journal of Experimental Education. 2015;5(2):269. (in Russian)

48. Kuptsov N.S., Takunov I.P. Lupine: Genetics, breeding, heterogeneous cultivation. Bryansk, 2006. (in Russian)

49. Kuznetsova L., Zabodalova L., Domoroshchenkova M. Lupinwhey as a perspective substrate for bioethanol production. Energy Procedia. 2015;72:103-110. DOI 10.1016/j.egypro.2015.06.015.

50. Lakhmotkina G.N. Lupine dietary fiber as a functional food ingredient. Pishchevaya Promyshlennost = Food Industry. 2011;11: 29-31. (in Russian)

51. Lee M.J., Pate J.S., Harris D.J., Atkins C.A. Synthesis, transport and accumulation of quinolizidine alkaloids in Lupinus albus L. and Lupinus angustifolius L. J. Exp. Bot. 2007;58:935-946.

52. Li X., Yang H., Buirchell B., Yan G. Development of a DNA marker tightly linked to low-alkaloid gene iucundus in narrow-leafed lupin (Lupinus angustifolius L.) for marker-assisted selection. Crop Past. Sci. 2011;62:218-224.

53. Lima A.I., Mota J., Monteiro S.A, Ferreira R.M. Legume seeds and colorectal cancer revisited: Protease inhibitors reduce MMP- 9 activity and colon cancer cell migration. Food Chem. 2016; 197(Pt.A):30-38. DOI 10.1016/j.foodchem.2015.10.063.

54. Linnemann A.R., Dijkstra D.S. Toward sustainable production of protein-rich foods: appraisal of eight crops for Western Europe. Part I. Analysis of the primary links of the production chain. Crit. Rev. Food Sci. Nutr. 2002;42(4):377-401. DOI 10.1016/j.seizure.2016.05.010.

55. Lucas M.M., Stoddard F., Annicchiarico P., Frias J., MartinezVillaluenga C., Sussmann D., Duranti M., Seger A., Zander P., Pueyo J. The future of lupin as a protein crop in Europe. Front. Plant Sci. 2015;6:705. DOI 10.3389/fpls.2015.00705.

56. Lysenko O.G. Narrow-leafed lupine (Lupinus angustifolius L.) – sideral culture. Nauchnye Trudy po Agronomii = Scientific Works on Agronomy. 2019;2(2):45-50. (in Russian)

57. Martínez-VillaluengaC., ZieliňskiH., FriasJ., PiskułaM.K., Kozłowska H., Vidal-Valverde C. Antioxidant capacity and polyphenolic content of high-protein lupin products. Food Chem. 2009;112: 84-88.

58. Mikolajczyk J. Genetic studies in Lupinus angustifolius. Part III. Inheritance of the alkaloid content, seed hardness and length of the growing season in blue lupin. Genet. Polonica. 1966;7(3-4):181-196.

59. Mousavi-Derazmahalleh M., Nevado B., Bayer P.E., Filatov D.A., Hane J.K., Edwards D., Erskine W., Nelson M.N. The western Mediterranean region provided the founder population of domesticated narrow-leafed lupin. Theor. Appl. Genet. 2018; 131(12):2543-2554. DOI 10.1007/s00122-018-3171-x.

60. Oomah B.D., Tiger N., Olson M., Balasubramanian P. Phenolics and antioxidative activities in narrowleafed lupins (Lupinus angustifolius L.). Plant Foods Hum. Nutr. (Dordr). 2006;61: 91-97.

61. Otterbach S.L., Yang T., Kato L., Janfelt C., Geu-Flores F. Quinolizidine alkaloids are transported to seeds of bitter narrow-leafed lupin. J. Exp. Bot. 2019;70(20):5799-5808. DOI 10.1093/jxb/erz334.

62. Pankina I.A., Borisova L.M. Development of combined culinary products based on lupine grain. In: Healthy Food Technologies and Products: Proceedings of the 9th International Scientific and Practical Conference dedicated to the 20th anniversary of the branch of science, Saratov, Dec. 1–12, 2015. Saratov, 2015;326-329. (in Russian)

63. Philippi J., Schliephake E., Jürgens H., Jansen G., Ordon F. Feeding behavior of aphids on narrow-leafed lupin (Lupinus angustifolius) genotypes varying in the content of quinolizidine alkaloids. Entomol. Exp. Appl. 2015;156;37-51. DOI 10.1111/eea.12313.

64. Plewiński P., Książkiewicz M., Rychel-Bielska S., Rudy E., Wolko B. Candidate domestication-related genes revealed by expression quantitative trait loci mapping of narrow-leafed lupin (Lupinus angustifolius L.). Int. J. Mol. Sci. 2019;20(22):5670. DOI 10.3390/ijms20225670.

65. Pollard N.J., Stoddard F.L., Popineau Y., Wrigley C.W., MacRitchie F. Lupin flours as additives: dough mixing, breadmaking, emulsifying and foaming. Cereal Chem. 2002;79:662-669.

66. Romanchuk I.Yu., Anokhina V.S. Lupine alkaloids: structure, biosynthesis, genetics. Molekulyarnaya i Prikladnaya Genetika = Molecular and Applied Genetics. 2018;25:108-123. (in Russian)

67. Romeo F.V., Fabroni S., Ballistreri G., Muccilli S., Spina A., Rapisarda P. Characterization and antimicrobial activity of alkaloid extracts from seeds of different genotypes of Lupinus spp. Sustainability. 2018;10(3):788. DOI 10.3390/su10030788.

68. Rychel S., Ksiazkiewich M., Rudy E., Nelson M., Napanowska B., Wolko B. Genotyping of sequencing of white and narrow leafed lupins. In: Proc. 14th Int. Lupin Conf. Milan, Italy, 2015;154.

69. Sedláková K., Straková E., Suchý P., Krejcarová J., Herzig I. Lupin as a perspective protein plant for animal and human nutrition – a review. Acta Vet. Brno. 2016;85:165-175. DOI 10.2754/avb201685020165.

70. Sengbusch R. Bitterstoffarme Lupinen. Zuchter. 1931;4:93-109.

71. Sengbusch R.V. Susslupinen und Ollupinen. Die Entstehungsgeschichte einiger neuen Kulturpflanzen. Landw Jb. 1942;91:719-880.

72. Sgambato S., Passariello N., Paolisso G., Bisesti V., Tesauro P. Effect of sparteine sulphate on insulin secretion in normal men. Horm. Metab. Res. 1986;18:686-688.

73. Truter W.F., Botha P.R., Dannhauser C.S., Maasdorp B.V., Miles N., Smith A., Snyman H.A., Tainton N.M. Southern African pasture and forage science entering the 21st century: past to present. Afr. J. Range Forage Sci. 2015;32(2):73-89.

74. Villalpando-Vargas F., Medina-Ceja L. Sparteine as an anticonvulsant drug: evidence and possible mechanism of action. Seizure. 2016;39: 49-55. DOI 10.1016/j.seizure.2016.05.010.

75. Wang S., Errigton S., Yap H.H. Studies on carotenoids from lupin seeds. In: Lupins for Health and Wealth: Proc. New Zealand, 2008;198-202.

76. Wiedemann M., Gurrola-Díaz C.M., Vargas-Guerrero B., Wink M., García-López P.M., Düfer M. Lupanine improves glucose homeostasis by influencing KATP channels and insulin gene expression. Molecules. 2015;20(10):19085-19100. DOI 10.3390/molecules201019085.

77. Wink M. Wounding-induced increase of quinolizidine alkaloid accumulation in lupin leaves. Z. Naturforsch. 1983;38:905-909. DOI 10.1515/znc-1983-11-1204.

78. Wink M. Quinolizidine alkaloids: biochemistry, metabolism, and function in plants and cell suspension cultures. Planta Med. 1987;53:509-582.

79. Wink M. Plant breeding: low or high alkaloid content. In: Proc. 6th Int. Lupin Conf. Geraldton, 1990;326-334.

80. Wink M. The role of quinolizidine alkaloids in plant-insect interactions. In: Bernays E.A. (Ed.). Insect-Plant Interactions. Vol. IV. Boca Raton: CRC Press, 1992;131-166.

81. Wink M. Allelochemical properties or the raison d’être of alkaloids. In: The Alkaloids. Vol. 43. San Diego: Acad. Press, 1993;1-118.

82. Wink M., Hartmann T. Localization of the enzymes of quinolizidine alkaloid biosynthesis in leaf chloroplasts of Lupinus polyphyllus. Plant Physiol. 1982;70:74-77. DOI 10.1104/pp.70.1.74.

83. Yagovenko L.L., Takunov I.P., Yagovenko G.L. The effect of lupine plowed in as green manure on soil properties. Agrokhimiya = Agrochemistry. 2003;6:71-80. (in Russian)

84. Yáñez E. Lupin as a source of protein in human nutrition. In: Proc. 6th Int. Lupin Conf. Temuco, Chile, 1990;115-123.

85. Yang H., Clements J.C., Li C. Bridge sequencing technologies with crop breeding. In: Proc. 14th Int. Lupin Conf. Milan, 2015; 8-11.

86. Yang H., Tao Y., Zheng Z., Zhang Q., Zhou G., Sweetingham M.W., Howieson J.G., Li C. Draft genome sequence, and a sequencedefined genetic linkage map of the legume crop species Lupinus angustifolius L. PLoS One. 2013;8(5):e64799. DOI 10.1371/journal.pone.0064799.

87. Zachow F. Ein neues Gen für Alkaloidarmut bei Lupinus angustifolius. Züchter. 1967;37:35-38.


Просмотров: 70


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-0462 (Print)
ISSN 2500-3259 (Online)