Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Characteristic of the active substance of the Saccharomyces cerevisiae preparation having radioprotective properties

https://doi.org/10.18699/VJ20.658

Abstract

The paper describes some biological features of the radioprotective effect of double-stranded RNA preparation. It was found that yeast RNA preparation has a prolonged radioprotective effect after irradiation by a lethal dose of 9.4 Gy. 100 % of animals survive on the 70th day of observation when irradiated 1 hour or 4 days after 7 mg RNA preparation injection, 60 % animals survive when irradiated on day 8 or 12. Time parameters of repair of double-stranded breaks induced by gamma rays were estimated. It was found that the injection of the RNA preparation at the time of maximum number of double-stranded breaks, 1 hour after irradiation, reduces the efficacy of radioprotective action compared with the injection 1 hour before irradiation and 4 hours after irradiation. A comparison of the radioprotective effect of the standard radioprotector B-190 and the RNA preparation was made in one experiment. It has been established that the total RNA preparation is more efficacious than B-190. Survival on the 40th day after irradiation was 78 % for the group of mice treated with the RNA preparation and 67 % for those treated with B-190. In the course of analytical studies of the total yeast RNA preparation, it was found that the preparation is a mixture of single-stranded and double-stranded RNA. It was shown that only double-stranded RNA has radioprotective properties. Injection of 160 μg double-stranded RNA protects 100 % of the experimental animals from an absolutely lethal dose of gamma radiation, 9.4 Gy. It was established that the radioprotective effect of double-stranded RNA does not depend on sequence, but depends on its double-stranded form and the presence of “open” ends of the molecule. It is supposed that the radioprotective effect of double-stranded RNA is associated with the participation of RNA molecules in the correct repair of radiation-damaged chromatin in blood stem cells. The hematopoietic pluripotent cells that have survived migrate to the periphery, reach the spleen and actively proliferate. The newly formed cell population restores the hematopoietic and immune systems, which determines the survival of lethally irradiated animals.

About the Authors

G. S. Ritter
Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
Russian Federation
Novosibirsk


V. P. Nikolin
Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
Russian Federation
Novosibirsk


N. A. Popova
Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Russian Federation
Novosibirsk


A. S. Proskurina
Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
Russian Federation
Novosibirsk


P. E. Kisaretova
Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
Russian Federation
Novosibirsk


O. S. Taranov
State Research Center of Virology and Biotechnology “Vector”
Russian Federation
Koltsovo, Novosibirsk region


T. D. Dubatolova
Institute of Molecular and Cellular Biology of Siberian Branch of the Russian Academy of Sciences
Russian Federation
Novosibirsk


E. V. Dolgova
Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
Russian Federation
Novosibirsk


E. A. Potter
Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
Russian Federation
Novosibirsk


S. S. Kirikovich
Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
Russian Federation
Novosibirsk


Y. R. Efremov
Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Russian Federation
Novosibirsk


S. I. Bayborodin
Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Russian Federation
Novosibirsk


M. V. Romanenko
Novosibirsk State University
Russian Federation
Novosibirsk


M. I. Meschaninova
Institute of Chemical Biology and Fundamental Medicine of Siberian Branch of the Russian Academy of Sciences
Russian Federation
Novosibirsk


A. G. Venyaminova
Institute of Chemical Biology and Fundamental Medicine of Siberian Branch of the Russian Academy of Sciences
Russian Federation
Novosibirsk


N. A. Kolchanov
Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
Russian Federation
Novosibirsk


S. S. Bogachev
Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
Russian Federation
Novosibirsk


References

1. Озеров И.В., Осипов А.Н. Кинетическая модель репарации двунитевых разрывов ДНК в первичных фибробластах человека при действии редкоионизирующего излучения с различной мощностью дозы. Компьютерные исследования и моделирование. 2015;7(1):159-176. DOI 10.20537/2076-7633-2015-7-1-159-176. [Ozerov I.V., Osipov A.N. Kinetic model of DNA double-strand break repair in primary human fibroblasts exposed to low-LET irradiation with various dose rates. Kompyuternye Issledovaniya i Modelirovanie = Computer Research and Modeling. 2015;7(1):159- 176. DOI 10.20537/2076-7633-2015-7-1-159-176. (in Russian)]

2. Риттер Г.С., Николин В.П., Попова Н.А., Кисаретова П.Э., Долгова Е.В., Проскурина А.С., Поттер Е.А., Кирикович С.С., Байбородин С.И., Таранов О.С., Ефремов Я.Р., Колчанов Н.А., Богачев С.С. Изучение радиопротекторного действия двуцепочечной РНК, выделенной из дрожжей Saccharomyces cerevisiae. В: Четвертый междисципл. науч. форум с междунар. участием «Новые материалы и перспективные технологии»: Сб. материалов. М., 2018;II:161-167. [Ritter G.S., Nikolin V.P., Popova N.A., Kisaretova P.E., Dolgova E.V., Proskurina A.S., Potter E.A., Kirikovich S.S., Bayborodin S.I., Taranov O.S., Efremov Y.R., Kolchanov N.A., Bogachev S.S. Study of radioprotective action of double-stranded RNA extracted from Saccharomyces cerevisiae. In: The Fourth interdisciplinary scientific forum with international participation “New Materials and Promising Technologies”: Proceedings. Moscow, 2018;II: 161-167. (in Russian)]

3. Bärtsch S., Kang L.E., Symington L.S. RAD51 is required for the repair of plasmid double-stranded DNA gaps from either plasmid or chromosomal templates. Mol. Cell. Biol. 2000;20(4):1194-1205. DOI 10.1128/mcb.20.4.1194-1205.2000.

4. Belli M., Sapora O., Tabocchini M.A. Molecular targets in cellular response to ionizing radiation and implications in space radiation protection. J. Radiat Res. 2002;43(S):S13-S19. DOI 10.1269/jrr.43.s13.

5. Bergonié J., Tribondeau L. Interpretation of some results from radiotherapy and an attempt to determine a rational treatment technique (1906). Yale J. Biol. Med. 2003;76(4):181-182.

6. Dent P., Yacoub A., Contessa J., Caron R., Amorino G., Valerie K., HaganM.P., GrantS., Schmidt-UllrichR. Stress and radiation-induced activation of multiple intracellular signaling pathways. Radiat. Res. 2003;159(3):283-300. DOI 10.1667/0033-7587(2003)159[0283:sariao]2.0.co;2.

7. Dische Z. In: Colowick S.P., Kaplan N.O. (Eds.). Methods in Enzymology. Vol. III. New York: Acad. Press, 1957.

8. Dolgova E.V., Alyamkina E.A., Efremov Y.R., Nikolin V.P., Popova N.A., Tyrinova T.V., Kozel A.V., Minkevich A.M., Andrushkevich O.M., Zavyalov E.L., Romaschenko A.V., Bayborodin S.I., Taranov O.S., Omigov V.V., Shevela E.Y., Stupak V.V., Mishinov S.V., Rogachev V.A., Proskurina A.S., Mayorov V.I., Shurdov M.A., Ostanin A.A., Chernykh E.R., Bogachev S.S. Identification of cancer stem cells and a strategy for their elimination. Cancer Biol. Ther. 2014;15(10):1378-1394. DOI 10.4161/cbt.29854.

9. Dolgova E.V., Efremov Y.R., Orishchenko K.E., Andrushkevich O.M., Alyamkina E.A., Proskurina A.S., Bayborodin S.I., Nikolin V.P., Popova N.A., Chernykh E.R., Ostanin A.A., Taranov O.S., Omigov V.V., Minkevich A.M., Rogachev V.A., Bogachev S.S., Shurdov M.A. Delivery and processing of exogenous double-stranded DNA in mouse CD34+ hematopoietic progenitor cells and their cell cycle changes upon combined treatment with cyclophosphamide and double-stranded DNA. Gene. 2013a;528(2):74-83. DOI 10.1016/j.gene.2013.06.058.

10. Dolgova E.V., Nikolin V.P., Popova N.A., Proskurina A.S., Orishchenko K.E., Alyamkina E.A., Efremov Y.R., Baiborodin S.I., Chernykh E.R., Ostanin A.A., Bogachev S.S., Gvozdeva T.S., Malkova E.M., Taranov O.S., Rogachev V.A., PanovA.S., Zagrebelnyi S.N., Shurdov M.A. Pathological changes in mice treated with cyclophosphamide and exogenous DNA. Russ. J. Genet.: Appl. Res. 2013b; 3(4):291-304. DOI 10.1134/S2079059713040035.

11. Fridovich I. Superoxide radical and superoxide dismutases. Annu. Rev. Biochem. 1995;64(1):97-112. DOI 10.1146/annurev.bi.64.070195.000525.

12. Goodhead D.T. Initial events in the cellular effects of ionizing radiations: clustered damage in DNA. Int. J. Radiat. Biol. 1994;65(1): 7-17. DOI 10.1080/09553009414550021.

13. Leung W., Malkova A., Haber J.E. Gene targeting by linear duplex DNA frequently occurs by assimilation of a single strand that is subject to preferential mismatch correction. Proc. Natl. Acad. Sci. USA. 1997;94(13):6851-6856. DOI 10.1073/pnas.94.13.6851.

14. Li J., Read L.R., Baker M.D. The mechanism of mammalian gene replacement is consistent with the formation of long regions of heteroduplex DNA associated with two crossing-over events. Mol. Cell. Biol. 2001;21(2):501-510. DOI 10.1128/mcb.21.2.501-510.2001.

15. Likhacheva A.S., Nikolin V.P., Popova N.A., Rogachev V.A., Prokhorovich M.A., Sebeleva T.E., Bogachev S.S., Shurdov M.A. Exogenous DNA can be captured by stem cells and be involved in their rescue from death after lethal-dose γ-radiation. Gene Ther. Mol. Biol. 2007;11(2):305-314.

16. Maréchal A., Zou L. DNA damage sensing by the ATM and ATR kinases. Cold Spring Harb. Perspect. Biol. 2013;5(9). DOI 10.1101/cshperspect.a012716.

17. Meers C., Keskin H., Storici F. DNA repair by RNA: templated, or not templated, that is the question. DNA Repair (Amst). 2016;44:17-21. DOI 10.1016/j.dnarep.2016.05.002.

18. Morgan W.F. Non-targeted and delayed effects of exposure to ionizing radiation: I. Radiation-induced genomic instability and bystander effects in vitro. Radiat. Res. 2003a;159(5):567-580. DOI 10.1667/0033-7587(2003)159[0567:nadeoe]2.0.co;2.

19. Morgan W.F. Non-targeted and delayed effects of exposure to ionizing radiation: II. Radiation-induced genomic instability and bystander effects in vivo, clastogenic factors and transgenerational effects. Radiat. Res. 2003b;159(5):581-596. DOI 10.1667/0033-7587(2003)159[0581:nadeoe]2.0.co;2.

20. Patt H.M., Tyree E.B., Straube R.L., Smith D.E. Cysteine protection against X irradiation. Science. 1949;110(2852):213-214. DOI 10.1126/science.110.2852.213.

21. Peitzsch C., Kurth I., Kunz-Schughart L., Baumann M., Dubrovska A. Discovery of the cancer stem cell related determinants of radioresistance. Radiother. Oncol. 2013;108(3):378-387. DOI 10.1016/j.radonc.2013.06.003.

22. Rogakou E.P., Boon C., Redon C., Bonner W.M. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J. Cell Biol. 1999;146(5):905-915. DOI 10.1083/jcb.146.5.905.

23. Rogakou E.P., Pilch D.R., Orr A.H., Ivanova V.S., Bonner W.M. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 1998;273(10):5858-5868. DOI 10.1074/jbc.273.10.5858.

24. Shemetun O.V., Pilinska M.A. Radiation-induced bystander effect – modeling, manifestation, mechanisms, persistence, cancer risks. Probl. Radiac. Med. Radiobiol. 2019;24:65-92. DOI 10.33145/2304-8336-2019-24-65-92.

25. Storici F., Bebenek K., Kunkel T.A., Gordenin D.A., Resnick M.A. RNA-templated DNA repair. Nature. 2007;447(7142):338-341. DOI 10.1038/nature05720.

26. Symington L.S. Focus on recombinational DNA repair. EMBO Rep. 2005;6(6):512-517. DOI 10.1038/sj.embor.7400438.

27. Vogin G., Foray N. The law of Bergonié and Tribondeau: a nice formula for a first approximation. Int. J. Radiat. Biol. 2013;89(1):2-8. DOI 10.3109/09553002.2012.717732.

28. Wang Y., Xu C., Du L.Q., Cao J., Liu J.X., Su X., Zhao H., Fan F.Y., Wang B., Katsube T., Fan S.J., Liu Q. Evaluation of the comet assay for assessing the dose-response relationship of DNA damage induced by ionizing radiation. Int. J. Mol. Sci. 2013;14(11):22449- 22461. DOI 10.3390/ijms141122449.

29. Ward J.F. DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation, and reparability. Prog. Nucleic Acid Res. Mol. Biol. 1988;35(C):95-125. DOI 10.1016/S0079-6603(08)60611-X.


Review

Views: 736


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)