Симбиотические бактерии Wolbachia, Spiroplasma и Rickettsia среди тлей (Aphidoidea)
https://doi.org/10.18699/VJ20.661
Аннотация
Тли – разнообразное семейство вредителей сельскохозяйственных культур. Тли сформировали сложную взаимосвязь с внутриклеточными бактериями, известными как эндосимбионты, которые оказывают как положительное, так и отрицательное влияние на хозяина, что может иметь практическое значение. В разных регионах мира состав факультативных симбионтов в популяциях тлей варьирует. Задачей работы было установить распространение и генетическое разнообразие симбионтов Wolbachia, Spiroplasma и Rickettsia в тлях, собранных в 2018–2019 гг. в Москве и Подмосковье. Для этого 578 тлей из 32 мест сбора тестировали методом ПЦР, используя специфические праймеры для мтДНК тлей, Wolbachia, Spiroplasma и Rickettsia. Методом молекулярно-генетического анализа определено не менее 21 вида тлей из 14 родов и четырех семейств. Одиннадцать видов оказались инфицированы эндосимбионтами, а именно: у шести видов обнаружены Rickettsia, у двух видов – Wolbachia, у одного – Spiroplasma. Впервые выявлено заражение бактерией Rickettsia у Impatientinum asiaticum, Myzus cerasi, Hyalopterus pruni, Eucallipterus tiliae, Chaitophorus tremulae и бактерией Wolbachia у Aphis pomi и C. tremulae. У половины особей гороховой тли Acyrthosiphon pisum установлено двойное заражение Rickettsia и Spiroplasma. Впервые выявлены риккетсии у шести видов тлей, которые генетически отличаются от известных ранее. Впервые обнаружено заражение яблонной тли A. pomi двумя штаммами Wolbachia, причем один из штаммов относится к супергруппе В и генетически близок с Wolbachia из осиновой тли C. tremulae, а второй штамм относится к супергруппе М, недавно описанной у видов тлей. Spiroplasma, найденная нами у A. pisum, генетически близка Spiroplasma, вызывающей андроцид у тлей, божьих коровок и молей, и кластеризуется с S. ixodetis. Разнообразие ДНК симбионтов убедительно свидетельствует о том, что как материнское наследование, так и горизонтальный перенос являются путями распространения факультативных бактерий у тлей.
Об авторах
Д. А. РомановРоссия
Москва
Мытищи, Московская область
И. А. Захаров
Россия
Москва
Е. В. Шайкевич
Россия
Москва
Список литературы
1. Augustinos A.A., Santos-Garcia D., Dionyssopoulou E., Moreira M., Papapanagiotou A., Scarvelakis M., Doudoumis V., Ramos S., Aguiar A.F., Borges P.A.V., Khadem M., Latorre A., Tsiamis G., Bourtzis K. Detection and characterization of Wolbachia infections in natural populations of aphids: is the hidden diversity fully unraveled? PLoS One. 2011;6(12):e28695. DOI 10.1371/journal.pone.0028695.
2. Baldo L., Dunning Hotopp J.C., Jolley K.A., Bordenstein S.R., Biber S.A., Choudhury R.R., Hayashi C., Maiden M.C., Tettelin H., Werren J.H. Multilocus sequence typing system for the endosymbiont Wolbachia pipientis. Appl. Environ. Microbiol. 2006;72(11): 7098-7110. DOI 10.1128/AEM.00731-06.
3. Binetruy F., Bailly X., Chevillon C., Martin O.Y., Bernasconi M.V., Duron O. Phylogenetics of the Spiroplasma ixodetis endosymbiont reveals past transfers between ticks and other arthropods. Ticks TickBorne Dis. 2019;10:575-584.
4. Brady C.M., Asplen M.K., Desneux N., Heimpel G.E., Hopper K.R., Linnen C.R., Oliver K.M., Wulff J.A., White J.A. Worldwide populations of the aphid Aphis craccivora are infected with diverse facultative bacterial symbionts. Microb. Ecol. 2014;67:195-204. DOI 10.1007/s00248-013-0314-0.
5. Burland T.G. DNASTAR’s Lasergene sequence analysis software. Methods Mol. Biol. 2000;132:71-91.
6. Clewley J.P. Macintosh sequence analysis software. DNASTAR’s LaserGene. Mol. Biotechnol. 1995;3:221-224.
7. De Clerck C., Fujiwara A., Joncour P., Léonard S., Félix M.L., Francis F., Jijakli M.H., Tsuchida T., Massart S. A metagenomic approach from aphid’s hemolymph sheds light on the potential roles of coexisting endosymbionts. Microbiome. 2015;3:63. DOI 10.1186/s40168-015-0130-5.
8. Douglas A. Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu. Rev. Entomol. 1998;43:17-37.
9. Ferrari J., West J.A., Via S., Godfray H.C. Population genetic structure and secondary symbionts in host-associated populations of the pea aphid complex. Evolution. 2012;66(2):375-390. DOI 10.1111/j.1558-5646.2011.01436.x.
10. Folmer O., Black M., Hoeh W., Lutz R., Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994;3:294-299.
11. Fukatsu T., Tsuchida T., Nikoh N., Koga R. Spiroplasma symbiont of the pea aphid, Acyrthosiphon pisum (Insecta: Homoptera). Appl. Environ. Microbiol. 2001;67(3):1284-1291. DOI 10.1128/AEM.67.3.1284-1291.2001.
12. Gauthier J.-P., Outreman Y., Mieuzet L., Simon J.-C. Bacterial communities associated with host-adapted populations of pea aphids revealed by deep sequencing of 16S ribosomal DNA. PLoS One. 2015; 10(3):e0120664. DOI 10.1371/journal.pone.0120664.
13. Glowska E., Dragun-Damian A., Dabert M., Gerth M. New Wolbachia supergroups detected in quill mites (Acari: Syringophilidae). Infect. Genet. Evol. 2016;30:140-146.
14. Goryacheva I., Blekhman A., Andrianov B., Zakharov I.A. Heritable bacterial endosymbionts in native and invasive populations of Harmonia axyridis. Biol. Invasions. 2017;19:493-502. DOI 10.1007/s10530-016-1298-8.
15. Guidolin A.S., Cônsoli F.L. Diversity of the most commonly reported facultative symbionts in two closely-related aphids with different host ranges. Neotrop. Entomol. 2018;47(4):440-446. DOI 10.1007/s13744-017-0532-0.
16. Guo J., Hatt S., He K., Chen J., Francis F., Wang Z. Nine facultative endosymbionts in aphids. A review. J. AsiaPac. Entomol. 2017;20: 794-801. DOI 10.1016/j.aspen.2017.03.025.
17. Haynes S., Darby A.C., Daniell T.J., Webster G., Van Veen F.J., Godfray H.C., Prosser J.I., Douglas A.E. Diversity of bacteria associated with natural aphid populations. Appl. Environ. Microbiol. 2003; 69(12):7216-7223. DOI 10.1128/aem.69.12.7216-7223.2003.
18. Heck M. Insect transmission of plant pathogens: a systems biology perspective. mSystems. 2018;3(2):e00168-17. DOI 10.1128/mSystems. 00168-17.
19. Ilinsky Y., Kosterin O.E. Molecular diversity of Wolbachia in Lepidoptera: prevalent allelic content and high recombination of MLST genes. Mol. Phylogenet. Evol. 2017;109:164-179. DOI 10.1016/j.ympev.2016.12.034.
20. Jain M., Fleites L.A., Gabriel D.W. A small Wolbachia protein directly represses phage lytic cycle genes in “Candidatus Liberibacter asiaticus” within psyllids. mSphere. 2017;2(3):e00171-17. DOI 10.1128/mSphereDirect.00171-17.
21. Jones R.T., Bressan A., Greenwell A.M., Fierer N. Bacterial communities of two parthenogenetic aphid species cocolonizing two host plants across the Hawaiian Islands. Appl. Environ. Microbiol. 2011; 77(23):8345-8349. DOI 10.1128/AEM.05974-11.
22. Malyshina M.S., Peterson A.M., Glinskaya E.V. Ecological and physiological aspects of the formation of microbial cenoses in aphids (Hemiptera: Aphididae) feeding on woody and shrubby plants in Saratov oblast. Trudy Russkogo Entomologicheskogo Obshchestva = Proceedings of the Russian Entomological Society. 2014;85(2):40- 46. (in Russian)
23. Manzano-Marín A. No evidence for Wolbachia as a nutritional co-obligate endosymbiont in the aphid Pentalonia nigronervosa. bioRxiv. 2019. Preprint doi: 10.1101/609511. Publ. Microbiome. 2020;8:72. DOI 10.1186/s40168-020-00865-2.
24. Mathé-Hubert H., Kaech H., Ganesanandamoorthy P., Vorburger C. Evolutionary costs and benefits of infection with diverse strains of Spiroplasma in pea aphids. Evolution. 2019;73(7):1466-1481. DOI 10.1111/evo.13740.
25. Moreira M., Aguiar A.M.F., Bourtzis K., Latorre A., Khadem M. Wolbachia (Alphaproteobacteria: Rickettsiales) infections in isolated aphid populations from Oceanic Islands of the Azores Archipelago: revisiting the supergroups M and N. Environ. Entomol. 2019;48(2): 326-334. DOI 10.1093/ee/nvy189.
26. Nyabuga F.N., Outreman Y., Simon J.-C., Heckel D.G., Weisser W.W. Effects of pea aphid secondary endosymbionts on aphid resistance and development of the aphid parasitoid Aphidius ervi: a correlative study. Entomol. Exp. Appl. 2010;136(3):243-253. DOI 10.1111/j.1570-7458.2010.01021.x.
27. Russell J.A., Weldon S., Smith A.H., Kim K.L., Hu Y., Łukasik P., Doll S., Anastopoulos I., Novin M., Oliver K.M. Uncovering symbiont-driven genetic diversity across North American pea aphids. Mol. Ecol. 2013;22(7):2045-2059. DOI 10.1111/mec.12211.
28. Sakurai M., Koga R., Tsuchida T., Meng X.-Y., Fukatsu T. Rickettsia symbiont in the pea aphid Acyrthosiphon pisum: novel cellular tropism, effect on host fitness, and interaction with the essential symbiont Buchnera. Appl. Environ. Microbiol. 2005;71(7):4069-4075. DOI 10.1128/AEM.71.7.4069-4075.2005.
29. Sambrook J., Fritsch E.F., Maniatis T. Molecular Cloning: a laboratory manual. New York: Cold Spring Harbor Laboratory Press, 1989.
30. Sanada-Morimura S., Matsumura M., Noda H. Male killing caused by a Spiroplasma symbiont in the small brown planthopper, Laodelphax striatellus. J. Hered. 2013;104(6):821-829. DOI 10.1093/jhered/est052.
31. Shaikevich E., Bogacheva A., Rakova V., Ganushkina L., Ilinsky Y. Wolbachia symbionts in mosquitoes: intra- and intersupergroup recombinations, horizontal transmission and evolution. Mol. Phylogenet. Evol. 2019;134:24-34. DOI 10.1016/j.ympev.2019.01.020.
32. Simon J.-C., Boutin S., Tsuchida T., Koga R., Le Gallic J.F., Frantz A., Outreman Y., Fukatsu T. Facultative symbiont infections affect aphid reproduction. PLoS One. 2011;6(7):e21831. DOI 10.1371/journal.pone.0021831.
33. Simon J.-C., Sakurai M., Bonhomme J., Suchida T., Koga R., Fukatsu T. Elimination of a specialised facultative symbiont does not affect the reproductive mode of its aphid host. Ecol. Entomol. 2007;32(3): 296-301. DOI 10.1111/j.1365-2311.2007.00868.x.
34. Smith A.H., Łukasik P., O’Connor M.P., Lee A., Mayo G., Drott M.T., Doll S., Tuttle R., Disciullo R.A., Messina A., Oliver K.M., Russell J.A. Patterns, causes and consequences of defensive microbiome dynamics across multiple scales. Mol. Ecol. 2015;24(5):1135-1149. DOI 10.1111/mec.13095.
35. Stothard D.R., Clark J.B., Fuerst P.A. Ancestral divergence of Rickettsia bellii from the spotted fever and typhus groups of Rickettsia and antiquity of the genus Rickettsia. Int. J. Syst. Bacteriol. 1994; 44(4):798-804.
36. Tabata J., Hattori Y., Sakamoto H., Yukuhiro F., Fujii T., Kugimiya S., Mochizuki A., Ishikawa Y., Kageyama D. Male killing and incomplete inheritance of a novel Spiroplasma in the moth Ostrinia zaguliaevi. Microb. Ecol. 2011;61:254-263. DOI 10.1007/s00248-010-9799-y.
37. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 2013;30(12):2725-2729. DOI 10.1093/molbev/mst197.
38. Tinsley M., Majerus M. A new male-killing parasitism: Spiroplasma bacteria infect the ladybird beetle Anisosticta novemdecimpunctata (Coleoptera: Coccinellidae). Parasitology. 2006;132(6):757-765. DOI 10.1017/S0031182005009789.
39. Tsuchida T., Koga R., Shibao H., Matsumoto T., Fukatsu T. Diversity and geographic distribution of secondary endosymbiotic bacteria in natural populations of the pea aphid, Acyrthosiphon pisum. Mol. Ecol. 2002;11(10):2123-2135. DOI 10.1046/j.1365-294x.2002.01606.x.
40. Wang Z., Su X.-M., Wen J., Jiang Li-Y., Qiao G. Widespread infection and diverse infection patterns of Wolbachia in Chinese aphids. Insect Sci. 2014;21:313-325. DOI 10.1111/1744-7917.12102.
41. Weinert L., Werren J., Aebi A., Stone G., Jiggins F. Evolution and diversity of Rickettsia bacteria. BMC Biol. 2009;7:6. DOI 10.1186/1741-7007-7-6.
42. Zytynska S.E., Meyer S.T., Sturm S., Ullmann W., Mehrparvar M., Weisser W.W. Secondary bacterial symbiont community in aphids responds to plant diversity. Oecologia. 2016;180(3):735-747. DOI 10.1007/s00442-015-3488-y.
43. Zytynska S.E., Weisser W.W. The natural occurrence of secondary bacterial symbionts in aphids. Ecol. Entomol. 2016;41:13-26. DOI 10.1111/een.12281.