Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Structural and functional features of phytoene synthase isoforms PSY1 and PSY2 in pepper Capsicum annuum L. cultivars

https://doi.org/10.18699/VJ20.663

Abstract

The fruits of various pepper cultivars are characterized by a different colour, which is determined by the pigment ratio; carotenoids dominate in ripe fruits, while chlorophylls, in immature fruits. A key regulator of carotenoid biosynthesis is the phytoene synthase encoded by the PSY gene. The Capsicum annuum genome contains two isoforms of this enzyme, localized in leaf (PSY2) and fruit (PSY1) plastids. In this work, the complete PSY1 and PSY2 genes were identified in nine C. annuum cultivars, which differ in ripe fruit colour. PSY1 and PSY2 sequence variability was 2.43 % (69 SNPs) and 1.21 % (36 SNPs). The most variable were PSY1 proteins of the cultivars ‘Maria’ (red-fruited) and ‘Sladkij shokolad’ (red-brown-fruited). All identified PSY1 and PSY2 homologs contained the phytoene synthase domain HH-IPPS and the transit peptide. In the PSY1 and PSY2 HH-IPPS domains, functionally significant sites were determined. For all accessions studied, the active sites (YAKTF and RAYV), aspartate-rich substrate-Mg2+-binding sites (DELVD and DVGED), and other functional residues were shown to be conserved. Transit peptides were more variable, and their similarity in the PSY1 and PSY2 proteins did not exceed 78.68 %. According to the biochemical data obtained, the largest amounts of chlorophylls and carotenoids across the cultivars studied were detected in immature and ripe fruits of the cv. ‘Sladkij shokolad’ and ‘Shokoladnyj’. Also, ripe fruits of the cv. ‘Nesozrevayuschij’ (green-fruited) were marked by significant chlorophyll content, but a minimum of carotenoids. The PSY1 and PSY2 expression patterns were determined in the fruit pericarp at three ripening stages in ‘Zheltyj buket’, ‘Sladkij shokolad’, ‘Karmin’ and ‘Nesozrevayuschij’, which have different ripe fruit colours: yellow, red-brown, dark red and green, respectively. In the leaves of the cultivars studied, PSY1 expression levels varied significantly. All cultivars were characterized by increased PSY1 transcription as the fruit ripened; the maximum transcription level was found in the ripe fruit of ‘Sladkij shokolad’, and the lowest, in ‘Nesozrevayuschij’. PSY2 transcripts were detected not only in the leaves and immature fruits, but also in ripe fruits. Assessment of a possible correlation of PSY1 and PSY2 transcription with carotenoid and chlorophyll content revealed a direct relationship between PSY1 expression level and carotenoid pigmentation during fruit ripening. It has been suggested that the absence of a typical pericarp pigmentation pattern in ‘Nesozrevayuschij’ may be associated with impaired chromoplast formation.

About the Authors

E. A. Dyachenko
Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences
Russian Federation
Moscow


M. A. Filyushin
Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences
Russian Federation
Moscow


G. I. Efremov
Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences
Russian Federation
Moscow


E. A. Dzhos
Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences; Federal Scientific Vegetable Center
Russian Federation

Moscow

VNIISSOK village, Moscow region



A. V. Shchennikova
Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences
Russian Federation
Moscow


E. Z. Kochieva
Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences
Russian Federation
Moscow


References

1. Filyushin M.A., Dzhos E.A., Shchennikova A.V., Kochieva E.Z. Dependence of pepper fruit colour on basic pigments ratio and expression pattern of carotenoid and anthocyanin biosynthesis genes. Russ. J. Plant Physiol. 2020;67(6):1054-1062. DOI 10.1134/S1021443720050040.

2. Bemer M., Karlova R., Ballester A.R., Tikunov Y.M., Bovy A.G., Wolters-Arts M., de Barros Rossetto P., Angenent G.C., de Maagd R.A. The tomato FRUITFULL homologs TDR4/FUL1 and MBP7/FUL2 regulate ethylene-independent aspects of fruit ripening. Plant Cell. 2012;24:4437. DOI 10.1105/tpc.112.103283.

3. Berry H.M., Rickett D.V., Baxter C.J., Enfissi E.M.A., Fraser P.D. Carotenoid biosynthesis and sequestration in red chilli pepper fruit and its impact on colour intensity traits. J. Exp. Bot. 2019;70(10):2637-2650. DOI 10.1093/jxb/erz086.

4. Cao H., Luo H., Yuan H., Eissa M.A., Thannhauser T.W., Welsch R., Hao Y.-J., Cheng L., Li L. A neighboring aromatic-aromatic amino acid combination governs activity divergence between tomato phytoene synthases. Plant Physiol. 2019;180(4):1988-2003. DOI 10.1104/pp.19.00384.

5. Cervantes-Paz B., Yahia E.M., Ornelas-Paz J.J., Victoria-Campos C.I., Ibarra-Junquera V., Pérez-Martínez J.D., Escalante-Minakata P. Antioxidant activity and content of chlorophylls and carotenoids in raw and heat-processed Jalapeño peppers at intermediate stages of ripening. Food Chem. 2014;146:188-196. DOI 10.1016/j.foodchem.2013.09.060.

6. Deruère J., Römer S., d’Harlingue A., Backhaus R.A., Kuntz M., Camara B. Fibril assembly and carotenoid overaccumulation in chromoplasts: a model for supramolecular lipoprotein structures. Plant Cell. 1994;6:119-133. DOI 10.2307/3869680.

7. Dias G.B., Gomes V.M., Moraes T.M., Zottich U.P., Rabelo G.R., Carvalho A.O., Moulin M., Gonçalves L.S., Rodrigues R., Da Cunha M. Characterization of Capsicum species using anatomical and molecular data. Genet. Mol. Res. 2013;12:6488-6501. DOI 10.4238/2013.february.28.29. Enfissi E.M., Nogueira M., Bramley P.M., Fraser P.D. The regulation of carotenoid formation in tomato fruit. Plant J. 2017;89:774-788.DOI 10.1111/tpj.13428.

8. Fraser P.D., Enfissi E.M., Halket J.M., Truesdale M.R., Yu D., Gerrish C., Bramley P.M. Manipulation of phytoene levels in tomato fruit: effects on isoprenoids, plastids, and intermediary metabolism. Plant Cell. 2007;19(10):3194-3211. DOI 10.1105/tpc.106.049817.

9. Fraser P.D., Schuch W., Bramley P.M. Phytoene synthase from tomato (Lycopersicon esculentum) chloroplasts – partial purification and biochemical properties. Planta. 2000;211:361-369. DOI 10.1007/s004250000293.

10. Giorio G., Stigliani A.L., D’Ambrosio C. Phytoene synthase genes in tomato (Solanum lycopersicum L.) – new data on the structures, the deduced amino acid sequences and the expression patterns. FEBS J. 2008;275(3):527-535. DOI 10.1111/j.1742-4658.2007.06219.x.

11. Giuffrida D., Dugo P., Torre G., Bignardi C., Cavazza A., Corradini C., Dugo G. Characterization of 12 Capsicum varieties by evaluation of their carotenoid profile and pungency determination. Food Chem. 2013;140(4):794-802. DOI 10.1016/j.foodchem.2012.09.060.

12. Giuliano G. Provitamin A biofortification of crop plants: a gold rush with many miners. Curr. Opin. Biotechnol. 2017;44:169-180. DOI 10.1016/j.copbio.2017.02.001.

13. Ha S.H., Kim J.B., Park J.S., Lee S.-W., Cho K.-J. A comparison of the carotenoid accumulation in Capsicum varieties that show different ripening colours: deletion of the capsanthin–capsorubin synthase gene is not a prerequisite for the formation of a yellow pepper. J. Exp. Bot. 2007;58:3135-3144. DOI 10.1093/jxb/erm132.

14. Howard L.R., Talcott S.T., Brenes C.H., Villalon B. Changes in phytochemical and antioxidant activity of selected pepper cultivars (Capsicum species) as influenced by maturity. J. Agric. Food Chem. 2000;48:1713-1720. DOI 10.1021/jf990916t.

15. Jang S.J., Jeong H.B., Jung A., Kang M.-Y., Kim S., Ha S.-H., Kwon J.- K., Kang B.-C. Phytoene Synthase 2 can compensate for the absence of Psy1 in Capsicum fruit. J. Exp. Bot. 2020;71(12): 3417-3427. pii: eraa155. DOI 10.1093/jxb/eraa155.

16. Kachanovsky D.E., Filler S., Isaacson T., Hirschberg J. Epistasis in tomato color mutations involves regulation of phytoene synthase 1 expression by cis-carotenoids. Proc. Natl. Acad. Sci. USA. 2012;109: 19021-19026. DOI 10.1073/pnas.1214808109.

17. Kilcrease J., Rodriguez-Uribe L., Richins R.D., Arcos J.M.G., Victorino J., O’Connell M.A. Correlations of carotenoid content and transcript abundances for fibrillin and carotenogenic enzymes in Capsicum annum fruit pericarp. Plant Sci. 2015;232:57-66. DOI 10.1016/j.plantsci.2014.12.014.

18. Levy A., Hare S., Palevitch D., Akiri B., Menagem E., Kanner J. Carotenoid pigments and β-carotene in paprika fruits (Capsicum spp.) with different genotypes. J. Agric. Food Chem. 1995;43:362-366. DOI 10.1021/jf00050a019.

19. Lichtenthaler H.K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol. 1987;148:350-382. DOI 10.1016/0076-6879(87)48036-1.

20. Márkus F., Daood H.G., Kapitaány J., Biacs P.A. Change in the carotenoid and antioxidant content of spice red pepper (paprika) as a function of ripening and some technological factors. J. Agric. Food Chem. 1999;47:100-107. DOI 10.1021/jf980485z.

21. Meléndez-Martínez A.J., Fraser P.D., Bramley P.M. Accumulation of health promoting phytochemicals in wild relatives of tomato and their contribution to in vitro antioxidant activity. Phytochemistry. 2010;71(10):1104-1114. DOI 10.1016/j.phytochem.2010. 03.021.

22. Mohd Hassan N., Yusof N.A., Yahaya A.F., Mohd Rozali N.N., Othman R. Carotenoids of Capsicum fruits: pigment profile and healthpromoting functional attributes. Antioxidants (Basel ). 2019;8(10): 469. DOI 10.3390/antiox8100469.

23. Moscone E.A., Scaldaferro M.A., Grabiele M., Cecchini N.M., Sánchez García Y., Jarret R., Daviña J.R., Ducasse D.A., Barboza G.E., Ehrendorfer F. The evolution of chili peppers (Capsicum – Solanaceae): a cytogenetic perspective. Acta Hortic. 2007;745:137-170. DOI 10.17660/ActaHortic.2007.745.5.

24. Osorio C.E. The role of orange gene in carotenoid accumulation: manipulating chromoplasts toward a colored future. Front. Plant Sci. 2019;10:1235. DOI 10.3389/fpls.2019.01235.

25. Puchooa D. A simple, rapid and efficient method for the extraction of genomic DNA from lychee (Litchi chinensis Sonn.). Afr. J. Biotech. 2004;3:253-255. DOI 10.5897/ajb2004.000-2046.

26. Shumskaya M., Bradbury L.M.T., Monaco R.R., Wurtzel E.T. Plastid localization of the key carotenoid enzyme phytoene synthase is altered by isozyme, allelic variation, and activity. Plant Cell. 2012;24: 3725-3741. DOI 10.1105/tpc.112.104174.

27. Solovchenko A.E., Chivkunova O.B., Merzlyak M.N., Reshetnikova I.V. A spectrophotometric analysis of pigments in apples. Rus. J. Plant Phys. 2001;48(5):693-700.

28. Stauder R., Welsch R., Camagna M., Kohlen W., Balcke G.U., Tissier A., Walter M.H. Strigolactone levels in dicot roots are determined by an ancestral symbiosis-regulated clade of the PHYTOENE SYNTHASE gene family. Front. Plant Sci. 2018;9:255. DOI 10.3389/fpls.2018.00255.

29. Story E.N., Kopec R.E., Schwartz S.J., Harris G.K. An update on the health effects of tomato lycopene. Annu. Rev. Food Sci. Technol. 2010;1:189-210. DOI 10.1146/annurev.food.102308.124120.

30. Sun T., Li L. Toward the ‘golden’ era: the status in uncovering the regulatory control of carotenoid accumulation in plants. Plant Sci. 2020; 290:110331. DOI 10.1016/j.plantsci.2019.110331.

31. Sun T., Xu Z., Wu C.T., Janes M., Prinyawiwatkul W., No H.K. Antioxidant activities of different colored sweet bell peppers (Capsicum annuum L.). J. Food Sci. 2007;72(2):98-102. DOI 10.1111/j.1750-3841.2006.00245.x.

32. Thorup T.A., Tanyolac B., Livingstone K.D., Popovsky S., Paran I., Jahn M. Candidate gene analysis of organ pigmentation loci in the Solanaceae. Proc. Natl. Acad. Sci. USA. 2000;97:11192-11197. DOI 10.1073/pnas.97.21.11192.

33. Welsch R., Medina J., Giuliano G., Beyer P., von Lintig J. Structural and functional characterization of the phytoene synthase promoter from Arabidopsis thaliana. Planta. 2003;216:523-534. DOI 10.1007/s00425-002-0885-3.

34. Zhou X., Welsch R., Yang Y., Álvarez D., Riediger M., Yuan H., Fish T., Liu J., Thannhauser T.W., Li L. Arabidopsis OR proteins are the major posttranscriptional regulators of phytoene synthase in controlling carotenoid biosynthesis. Proc. Natl. Acad. Sci. USA. 2015; 112(11):3558-3563. DOI 10.1073/pnas.1420831112.


Review

Views: 958


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)