1. Бурляева М.О., Соловьева А.Е., Силенко С.И. Исследование генетического разнообразия чины посевной по адаптивности биохимических показателей зеленой массы. Достижения науки и техники АПК. 2015;7:52-55.
2. Бурляева М.О., Соловьева А.Е., Никишкина М.А., Сергеев Е.А., Тихонова Н.И. Чина посевная (Lathyrus sativus L.): исходный материал для селекции на продуктивность и качественный состав семян и зеленой массы. В: Каталог мировой коллекции ВИР. Вып. 856. СПб., 2018.
3. Вишнякова М.А., Буравцева Т.А., Булынцев С.В., Бурляева М.О. Семенова Е.В., Сеферова И.В., Александрова Т.Г., Яньков И.И., Егорова Г.П., Герасимова Т.В. Коллекция мировых генетических ресурсов зерновых бобовых ВИР: пополнение, сохранение и изучение. СПб., 2010.
4. Донской М.М., Донская М.В., Бобков С.В., Селихова Т.Н., Наумкин В.П. Биохимический состав семян чины посевной. Зернобобовые и крупяные культуры. 2019;1(29):70-78. https://doi.org/10.24411/2309-348X-2019-11075.
5. Ивантер Е.В., Коросов А.В. Введение в количественную биологию. Петрозаводск, 2003.
6. Ситкин С.И., Ткаченко Е.И., Вахитов Т.Я., Орешко Л.С., Жигалова Т.Н. Метаболом сыворотки крови по данным газовой хроматографии - масс-спектрометрии (ГХ-МС) у пациентов с язвенным колитом и больных целиакией. Эксперим. и клин. гастроэнтерология. 2013;12:44-57.
7. Соловьева А.Е., Шеленга Т.В., Шаварда А.Л., Бурляева М.О. Сравнительный анализ диких и культурных видов чины (Lathyrus L.) по содержанию веществ первичного и вторичного метаболизма. Вавиловский журнал генетики и селекции. 2019;23(6):667-674.DOI 10.18699/VJ19.539.
8. Baudier K.M., Kaschock-Marenda S.D., Patel N., Diangelus K.L., O’Donnell S., Marenda D.R. Erythritol, a non-nutritive sugar alcohol sweetener and the main component of Truvia®, is a palatable ingested insecticide. PLoS One. 2014;9(6):e98949. https://doi.org/10.1371/journal.pone.0098949. Beebe D.U., Turgeon R. Localization of galactinol, raffinose, and stachyose synthesis in Cucurbita pepo leaves. Planta. 1992;188(3): 354. https://doi.org/10.1007/BF00192802.
9. Campbell C.G. Grass pea. Lathyrus sativus L. Promoting the conservation and use of underutilized and neglected crops. Vol. 18. Institute of Plant Genetics and Crop Plant Research, Gatersleben/International Plant Genetic Resources Institute, Rome, Italy, 1997. https://www.bioversityinternational.org/e-library/publications/detail/grass-pealathyrus-sativus-l
10. Chavan U.D. Chemical and biochemical components of beach pea (Lathyrus maritimus L.). Canada Department of Biochemistry, Memorial University of Newfoundland, 1998. http://research.library.mun.ca/id/eprint/1196
11. Deng S., Wei T., Tan K., Hu M., Li F., Zhai Y., Ye S., Xiao Y., Hou L., Pei Y., Luo M. Phytosterol content and the campesterol: sitosterol ratio influence cotton fiber development: role of phytosterols in cell elongation. Sci. China Life Sci. 2016;59:183-193. https://doi.org/10.1007/s11427-015-4992-3.
12. Dong J., Yan W., Bock C., Nokhrina K., Keller W., Georges F. Perturbing the metabolic dynamics of myo-inositol in developing Brassica napus seeds through in vivo methylation impacts its utilization as phytate precursor and affects downstream metabolic pathways. BMC Plant Biol. 2013;13:84. https://doi.org/10.1186/1471-2229-13-84.
13. Grela E.R., Rybiński W., Matras J., Sobolewska S. Variability of phenotypic and morphological characteristics of some Lathyrus sativus L. and Lathyrus cicera L. accessions and nutritional traits of their seeds. Genet. Resour. Crop Evol. 2012;59:1687-1703. https://doi.org/10.1007/s10722-011-9791-5. Hong J., Yang L., Zhang D., Shi J. Plant metabolomics: an indispensable system biology tool for plant science. Int. J. Mol. Sci. 2016; 17(6):767. https://doi.org/10.3390/ijms17060767.
14. Krasenski J., Jonak C. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J. Exp. Bot. 2012;63(4):1593-1608. https://doi.org/10.1093/jxb/err460.
15. Majumder A.L., Biswas B.B. Biology of Inositols and Phosphoinositides. Springer, 2006. https://doi.org/10.1007/0-387-27600-9.
16. Moreno A.S., Perotti V.E., Margarit E., Bello F., Vázquez D.E., Podestá F.E., Tripodi K.E.J. Metabolic profiling and quality assessment during the postharvest of two tangor varieties subjected to heat treatments. Postharvest Biol. Technol. 2018;142:10-18. https://doi.org/10.1016/j.postharvbio.2018.03.014.
17. Muzquiz M., Varela A., Burbano C., Cuadrado C., Guillamon E., Pedrosa M.M. Bioactive compounds in legumes: pronutritive and antinutritive actions. Implications for nutrition and health. Phytochem. Rev. 2012;11:227-244.
18. Patel T.K., Williamson J.D. Mannitol in plants, fungi, and plant-fungal interactions. Trends Plant Sci. 2016;21(6):486-497. https://doi.org/10.1016/j.tplants.2016.01.006.
19. Poland C., Faller T., Tisor L. Effect of chickling vetch (Lathyrus sativus L.) or alfalfa (Medicago sativa) hay in gestating ewe diets. Lathyrus Lathyrism Newsletter. 2003;3:38-40.
20. Puzanskiy R., Romanyuk D., Shishova M. Coordinated alterations in gene expression and metabolomic profiles of Chlamydomonas reinhardtii during batch autotrophic culturing. Bio. Comm. 2018;63(1): 87-99. https://doi.org/10.21638/spbu03.2018.110.
21. Rizvi A.H., Sarker A., Dogra A. Enhancing grass pea (Lathyrus sativus L.) production in problematic soils of South Asia for nutritional security. Indian J. Genet. Plant Breed. 2016;76:583-592. https://doi.org/10.5958/0975-6906.2016.00074.2.
22. Sarkar A., Emmrich P.M.F., Sarker A., Zong X., Martin C., Wang T.L.
23. Grass pea: remodeling an ancient insurance crop for climate resilience. In: Kole C. (Ed.). Genomic Designing of Climate-Smart Pulse Crops. Springer, Cham, 2019;425-469. https://doi.org/10.1007/978-3-319-96932-9_9.
24. Steinhauser D., Kopka J. Methods, applications and concepts of metabolite profiling: primary metabolism. In: Baginsky S., Fernie A.R. (Eds.). Plant Systems Biology. Basel: Birkhäuser Basel, 2007. https://doi.org/10.1007/978-3-7643-7439-6_8.
25. Tibbett M., Sanders F.E., Cairney J.W. Low-temperature-induced changes in trehalose, mannitol and arabitol associated with enhanced tolerance to freezing in ectomycorrhizal basidiomycetes (Hebeloma spp.). Mycorrhiza. 2002;12(5):249-255. https://doi.org/10.1007/s00572-002-0183-8.
26. Valitova J.N., Sulkarnayeva A.G., Minibayeva F.V. Plant sterols: diversity, biosynthesis, and physiological functions. Biochemistry (Moscow). 2016;81(8):819-834. https://doi.org/10.1134/S0006297916080046. Worley B., Powers R. Multivariate analysis in metabolomics. Curr. Metabolomics. 2012;1(1):92-107. https://doi.org/10.2174/2213235X1130101 0092.
27. Zhou J., Yang Y., Yu J., Wang L., Yu X., Ohtani M., Kusano M., Saito K., Demura T., Zhuge Q. Responses of Populus trichocarpa galactinol synthase genes to abiotic stresses. J. Plant Res. 2014;127(2):347-358. https://doi.org/10.1007/s10265-013-0597-8.