Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Comparative analysis of wild and cultivated Lathyrus L. species to assess their content of sugars, polyols, free fatty acids, and phytosterols

https://doi.org/10.18699/VJ20.667

Abstract

Under climate change, the need for crops resistant to abiotic and biotic stresses increases. Lathyrus spp. Are characterized by a high nutritional value of their green biomass. The grass pea is one of the most resistant to drought, aterlogging, cold, salinity, diseases and pests among cultivated legumes, and it is grown at minimal cost. The development of new Lathyrus cultivars with an improved composition of nutrients will make it possible to produce high-quality animal feed in areas with extremely unstable weather conditions. With this in view, the patterns of variability in the parameters of the carbohydrate complex (sugars, their lactone and methyl forms), polyols (including phenol-containing alcohols), phytosterols, free fatty acids (FFA) and acylglycerols were studied in the green biomass of 32 accessions representing Lathyrus sativus L., L. tuberosus L., L. sylvestris L., L. vernus (L.) Bernh., L. latifolius L. and L. linifolius (Reichard) Bassler. from the VIR collection, reproduced in Leningrad oblast under contrasting conditions of 2012 and 2013. The content of identified compounds varied depending on the genotype, species, and weather. High temperatures and high precipitation in 2013 contributed to the accumulation of monosaccharides, and the colder and drier conditions of 2012 to an increase in oligosaccharides, most polyols, and FFA. The cultivated species (L. sativus) was distinguished by its high sugar content, and the wild species as follows: L. latifolius by FFA; L. linifolius by ononitol, myo-inositol, and glycerol 3-phosphate; L. vernus by MAG and methylpentofuranoside. The resulting data showed that the Lathyrus accessions studied are promising for breeding stress-resistant cultivars of high nutritional quality.

About the Authors

A. E. Solovyeva
Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
Russian Federation
St. Petersburg


T. V. Shelenga
Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
Russian Federation
St. Petersburg


A. L. Shavarda
Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR); St. Petersburg State University; V.L. Komarov Botanical Institute of the Russian Academy of Sciences
Russian Federation
St. Petersburg


M. O. Burlyaeva
Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
Russian Federation
St. Petersburg


References

1. Burlyaeva М.О., Solovyeva A.E., Silenko S.I. The study of grass pea genetic diversity in terms of adaptability of green mass biochemical indices. Dostizheniya Nauki i Tekhniki APK = Achievements of Science and Technology of AIC. 2015;7:52-55. (in Russian)

2. Burlyaeva M.O., Solovyeva A.E., Nikishkina M.A., Sergeev E.A., Tikhonova N.I. Grass pea (Lathyrus sativus L.): the initial material for breeding for productivity and quality composition of seeds and green mass. In: Catalog of the World VIR Collection. Iss. 856. St. Petersburg, 2015. (in Russian)

3. Vishnyakova M.A., Buravtseva T.A., Bulyntsev S.V., Burlyaeva M.O., Semenova E.V., Seferova I.V., Aleksandrova T.G., Yankov I.I., Egorova G.P., Gerasimova T.V. The Collection of the World’s Genetic Resourses of Grain Legumes in VIR: Replenishment, Preservation and Study. St. Petersburg, 2010. (in Russian)

4. Donskoj M.M., Donskaya M.V., Bobkov S.V., Selihova T.N., Naumkin V.P. Biochemical composition of seeds of indian pea. Zernobobovye i Krupyanye Kultury = Legumes and Groat Crops. 2019; 1(29):70-78. DOI 10.24411/2309-348X-2019-11075. (in Russian)

5. Ivanter E.V., Korosov A.V. Introduction to Quantitative Biology. Petrozavodsk, 2003. (in Russian)

6. Sitkin S.I., Tkachenko Ye.I., Vakhitov T.Ya., Oreshko L.S., Zhigalova T.N. Serum metabolome by gas chromatography-mass spectrometry (GC-MS) in ulcerative colitis and celiac disease. Eksperimentalnaya i Klinicheskaya Gastroenterologiya = Experimental and Clinical Gastroenterology. 2013;12:44-57. (in Russian)

7. Solovyeva A.E., Shelenga T.V., Shavarda A.L., Burlyaeva M.O. Сomparative analysis of wild and cultivated Lathyrus L. spp. according to their primary and secondary metabolite contents. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2019;23(6):667-674. DOI 10.18699/VJ19.539. Adhikary P., Mukherjee A., Barik A. Free fatty acids from Lathyrus sativus seed coats acting as short-range attractants to Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). J. Stored. Prod. Res. 2016;67:56-62. DOI 10.1016/j.jspr.2016.01.005.

8. Baudier K.M., Kaschock-Marenda S.D., Patel N., Diangelus K.L., O’Donnell S., Marenda D.R. Erythritol, a non-nutritive sugar alcohol sweetener and the main component of Truvia®, is a palatable ingested insecticide. PLoS One. 2014;9(6):e98949. DOI 10.1371/journal.pone.0098949. Beebe D.U., Turgeon R. Localization of galactinol, raffinose, and stachyose synthesis in Cucurbita pepo leaves. Planta. 1992;188(3): 354. DOI 10.1007/BF00192802.

9. Campbell C.G. Grass pea. Lathyrus sativus L. Promoting the conservation and use of underutilized and neglected crops. Vol. 18. Institute of Plant Genetics and Crop Plant Research, Gatersleben/International Plant Genetic Resources Institute, Rome, Italy, 1997. https://www.bioversityinternational.org/e-library/publications/detail/grass-pealathyrus-sativus-l/

10. Chavan U.D. Chemical and biochemical components of beach pea (Lathyrus maritimus L.). Canada Department of Biochemistry, Memorial University of Newfoundland, 1998. http://research.library.mun.ca/id/eprint/1196

11. Deng S., Wei T., Tan K., Hu M., Li F., Zhai Y., Ye S., Xiao Y., Hou L., Pei Y., Luo M. Phytosterol content and the campesterol: sitosterol ratio influence cotton fiber development: role of phytosterols in cell elongation. Sci. China Life Sci. 2016;59:183-193. DOI 10.1007/s11427-015-4992-3.

12. Dong J., Yan W., Bock C., Nokhrina K., Keller W., Georges F. Perturbing the metabolic dynamics of myo-inositol in developing Brassica napus seeds through in vivo methylation impacts its utilization as phytate precursor and affects downstream metabolic pathways. BMC Plant Biol. 2013;13:84. DOI 10.1186/1471-2229-13-84.

13. Grela E.R., Rybiński W., Matras J., Sobolewska S. Variability of phenotypic and morphological characteristics of some Lathyrus sativus L. and Lathyrus cicera L. accessions and nutritional traits of their seeds. Genet. Resour. Crop Evol. 2012;59:1687-1703. DOI 10.1007/s10722-011-9791-5. Hong J., Yang L., Zhang D., Shi J. Plant metabolomics: an indispensable system biology tool for plant science. Int. J. Mol. Sci. 2016; 17(6):767. DOI 10.3390/ijms17060767.

14. Krasenski J., Jonak C. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J. Exp. Bot. 2012;63(4):1593-1608. DOI 10.1093/jxb/err460.

15. Majumder A.L., Biswas B.B. Biology of Inositols and Phosphoinositides. Springer, 2006. DOI 10.1007/0-387-27600-9.

16. Moreno A.S., Perotti V.E., Margarit E., Bello F., Vázquez D.E., Podestá F.E., Tripodi K.E.J. Metabolic profiling and quality assessment during the postharvest of two tangor varieties subjected to heat treatments. Postharvest Biol. Technol. 2018;142:10-18. DOI 10.1016/j.postharvbio.2018.03.014.

17. Muzquiz M., Varela A., Burbano C., Cuadrado C., Guillamon E., Pedrosa M.M. Bioactive compounds in legumes: pronutritive and antinutritive actions. Implications for nutrition and health. Phytochem. Rev. 2012;11:227-244.

18. Patel T.K., Williamson J.D. Mannitol in plants, fungi, and plant-fungal interactions. Trends Plant Sci. 2016;21(6):486-497. DOI 10.1016/j.tplants.2016.01.006.

19. Poland C., Faller T., Tisor L. Effect of chickling vetch (Lathyrus sativus L.) or alfalfa (Medicago sativa) hay in gestating ewe diets. Lathyrus Lathyrism Newsletter. 2003;3:38-40.

20. Puzanskiy R., Romanyuk D., Shishova M. Coordinated alterations in gene expression and metabolomic profiles of Chlamydomonas reinhardtii during batch autotrophic culturing. Bio. Comm. 2018;63(1): 87-99. DOI 10.21638/spbu03.2018.110.

21. Rizvi A.H., Sarker A., Dogra A. Enhancing grass pea (Lathyrus sativus L.) production in problematic soils of South Asia for nutritional security. Indian J. Genet. Plant Breed. 2016;76:583-592. DOI 10.5958/0975-6906.2016.00074.2.

22. Sarkar A., Emmrich P.M.F., Sarker A., Zong X., Martin C., Wang T.L.

23. Grass pea: remodeling an ancient insurance crop for climate resilience. In: Kole C. (Ed.). Genomic Designing of Climate-Smart Pulse Crops. Springer, Cham, 2019;425-469. DOI 10.1007/978-3-319-96932-9_9.

24. Steinhauser D., Kopka J. Methods, applications and concepts of metabolite profiling: primary metabolism. In: Baginsky S., Fernie A.R. (Eds.). Plant Systems Biology. Basel: Birkhäuser Basel, 2007. DOI 10.1007/978-3-7643-7439-6_8.

25. Tibbett M., Sanders F.E., Cairney J.W. Low-temperature-induced changes in trehalose, mannitol and arabitol associated with enhanced tolerance to freezing in ectomycorrhizal basidiomycetes (Hebeloma spp.). Mycorrhiza. 2002;12(5):249-255. DOI 10.1007/s00572-002-0183-8.

26. Valitova J.N., Sulkarnayeva A.G., Minibayeva F.V. Plant sterols: diversity, biosynthesis, and physiological functions. Biochemistry (Moscow). 2016;81(8):819-834. DOI 10.1134/S0006297916080046. Worley B., Powers R. Multivariate analysis in metabolomics. Curr. Metabolomics. 2012;1(1):92-107. DOI 10.2174/2213235X1130101 0092.

27. Zhou J., Yang Y., Yu J., Wang L., Yu X., Ohtani M., Kusano M., Saito K., Demura T., Zhuge Q. Responses of Populus trichocarpa galactinol synthase genes to abiotic stresses. J. Plant Res. 2014;127(2):347-358. DOI 10.1007/s10265-013-0597-8.


Review

Views: 801


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)