Preview

Vavilov Journal of Genetics and Breeding

Advanced search

The pattern of genetic diversity of different breeds of pigs based on microsatellite analysis

https://doi.org/10.18699/VJ20.669

Abstract

One of the main tasks of genetics and animal breeding is the assessment of genetic diversity and the study of genetic relationships between different breeds and populations using molecular genetic analysis methods. We analysed the polymorphism of microsatellites and the information on the state of genetic diversity and the population structure of local breeds in Russia: the Kemerovo, the Berkshire, the Liven, the Mangalitsa, and the Civilian; in the Republic of Belarus: the Large White and the Black-and-White; and in Ukraine: the White Steppe, as well as commercial breeds of imported origin of domestic reproduction: the Large White, the Landrace, and the Duroc. The materials used for this study were the tissue and DNA samples extracted from 1,194 pigs and DNA of the UNU “Genetic material bank of domestic and wild animal species and birds” of the L.K. Ernst Federal Research Center for Animal Husbandry. Polymorphisms of 10 microsatellites (S0155, S0355, S0386, SW24, SO005, SW72, SW951, S0101, SW240, and SW857) were determined according to the previously developed technique using DNA analyser ABI3130xl. To estimate the allele pool of each population, the average number of alleles (NA), the effective number of alleles (NE ) based on the locus, the rarified allelic richness (AR), the observed (HO ) and expected (HE ) heterozygosity, and the fixation index (FIS) were calculated. The degree of genetic differentiation of the breeds was assessed based on the pairwise values of FST and D. The analysis of the allelic and genetic diversity parameters of the local breeds showed that the maximum and minimum levels of polymorphism were observed in pigs of the Ukrainian White Steppe breed (NA = 6.500, NE = 3.709, and AR = 6.020) and in pigs of the Duroc breed (NA = 4.875, NE = 2.119, and AR = 3.821), respectively. The highest level of genetic diversity was found in the Large White breed of the Republic of Belarus (HO = 0.707 and NE = 0.702). The minimum level of genetic diversity was found in pigs of the imported breeds – the Landrace (HO = 0.459, HE = 0.400) and the Duroc (HO = 0.480, HE = 0.469) – indicating a high selection pressure in these breeds. Based on the results of phylogenetic analysis, the genetic origin of Large White pigs, the breeds, from which the Berkshire pigs originated, and the genetic detachment of the Landrace from the Mangalitsa breeds were revealed. The cluster analysis showed a genetic consolidation of the Black-and-White, the Berkshire, and the Mangalitsa pigs. Additionally, the imported breeds with clustering depending on the origin were characterised by a genetic structure different from that of the other breeds. The information obtained from these studies can serve as a guide for the management and breeding strategies of the pig breeds studied, to allow their better use and conservation.

About the Authors

V. R. Kharzinova
L.K. Ernst Federal Research Center for Animal Husbandry
Russian Federation
Dubrovitsy, Moscow region


N. A. Zinovieva
L.K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy
Russian Federation
Moscow region


References

1. Zinovieva N.A., Kharzinova V.R., Sizareva E.I., Gladyr’ E.A., Kostyunina O.V., Lugovoi S.I., Tapiha V.A., Gamko L.N., Ovseenko E.V., Shavyrina K.M., Ernst L.K. Evaluation of the contribution of different pig populations to the genetic diversity of the large white breed. Selskokhozyaystvennaya Biologiya = Agricultural Biology. 2012;6:35-42. (in Russian)

2. Stolpovsky Yu.A. Population genetics studies underlying preservation of domesticated animal species gene pools. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2013;17(4/2):900-915. (in Russian)

3. Kharzinova V.R., Karpushkina T.V., Deniskova T.E., Kostyunina O.V., Zinovieva N.A. Populational-genetic characterization of White Large, Landrace, and Duroc pig breeds using microsatellites. Zootekhniya = Zootechnics. 2018;4:2-7. (in Russian)

4. Kharzinova V.R., Kostyunina O.V., Zinovieva N.A. Сomparative characterization of the allele pool of local pig breeds based on microsatellite analysis. Svinovodstvo = Pig Breeding. 2017;1:5-7. (in Russian)

5. Khrabrova L.A., Kalinkova L.V., Zaitseva M.A. Guidelines for the Use of Horse DNA Analysis for the Assessment of Genetic Resources in Horse Breeding. Divovo, 2011. (in Russian) Allendorf F.W. Genetic drift and the loss of alleles versus heterozygosity. Zoo. Biol. 1986;5:181-190.

6. Andras J., Kirk N., Harvell C. Range-wide population genetic structure of Symbiodinium associated with the Caribbean sea fan coral, Gorgonia ventalina. Mol. Ecol. 2011;20:2525-2542. DOI 10.1111/j.1365-294X.2011.05115.x.

7. Caballero A., García-Dorado A. Allelic diversity and its implications for the rate of adaptation. Genetics. 2013;195(4):1373-1384. DOI 10.1534/genetics.113.158410.

8. Charoensook R., Gatphayak K., Brenig B., Knorr C. Genetic diversity analysis of Thai indigenous pig population using microsatellite markers. Asian-Australas. J. Anim. Sci. 2019;32(10):1491-1500.DOI 10.5713/ajas.18.0832.

9. da Silva E.C., Dutra W.M., Jr., Ianella P., Filho M.A.G. de Oliveira C.J.P., de Moura Ferreira D.N., Caetano A.R., Paiva S.R. Patterns of genetic diversity of local pig populations in the State of Pernambuco. R. Braz. Zootec. 2011;40(8):1691-1699. DOI 10.1590/S1516-35982011000800010.

10. Druml T., Salajpal K., Dikic M. Genetic diversity, population structure and subdivision of local Balkan pig breeds in Austria, Croatia, Serbia and Bosnia-Herzegovina and its practical value in conservation programs. Genet. Sel. Evol. 2012;44:5. DOI 10.1186/1297-9686-44-5.

11. Earl D.A., von Holdt B.M. Structure Harvester: a website and program for visualizing Structure output and implementing the Evanno method. Conserv. Genet. Resour. 2012;4:359-361. DOI 10.1007/s12686-011-9548-7.

12. Egito A.A., Paiva S.R., Albuquerque M.S., Mariante A.S., Almeida L.D., Castro S.R., Grattapaglia D. Microsatellite based genetic diversity and relationships among ten Creole and commercial cattle breeds raised in Brazil. BMC Genet. 2007;8:83-97. DOI 10.1186/1471-2156-8-83.

13. Evanno G., Regnaut S., Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 2005;14:2611-2620. DOI 10.1111/j.1365-294X.2005.02553.x.

14. FAO: Measurement of Domestic Animal Diversity (MoDAD): Original Working Group Report. Rome, FAO, 1998.

15. Greenbaum G., Templeton A.R., Zarmi Y., Bar-David S. Allelic richness following population founding events – a stochastic modeling framework incorporating gene flow and genetic drift. PLoS One. 2014;10(3):e0119663.

16. Guastella A.M., Criscione A., Marletta D., Zuccaro A., Chie L., Bordonaro S. Molecular characterization and genetic structure of the Nero Siciliano pig breed. Genet. Mol. Biol. 2010;33(4):650-656. DOI 10.1590/S1415-47572010005000075.

17. Hopper J.V., McCue K.F., Pratt P.D., Duchesne P., Grosholz E.D., Hufbauer R.A. Into the weeds: matching importation history to genetic consequences and pathways in two widely used biological control agents. Evol. Appl. 2018;12(4):1-18. DOI 10.1111/eva.12755.

18. Huson D.H., Bryant D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 2006;23(2):254-267. DOI 10.1093/molbev/msj030.

19. Jolliffe I.T., Cadima J. Principal component analysis: a review and recent developments. Philos. Trans. R. Soc. A. 2016;374(2065): 20150202. DOI 10.1098/rsta.2015.0202.

20. Jombart T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics. 2008;24:1403-1405. DOI 10.1093/bioinformatics/btn129.

21. Jost L. GST and its relatives do not measure differentiation. Mol. Ecol. 2008;17:4015-4026. DOI 10.1111/j.1365-294X.2008.03887.x.

22. Jost L., Archer F., Flanagan S., Gaggiotti O., Hoban S., Latch E. Differentiation measures for conservation genetics. Evol. Appl. 2018; 11(7):1139-1148. DOI 10.1111/eva.12590.

23. Kaul R., Singh A., Vijh R.K., Tantia M.S., Beh R. Evaluation of the genetic variability of 13 microsatellite markers in native Indian pigs. J. Genet. 2002;80:149-153. DOI 10.1007/BF02717911.

24. Keenan K., McGinnity P., Cross T.F., Crozier W.W., Prodöhl P.A. diveRsity: an R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol. Evol. 2013;4:782-788. DOI 10.1111/2041-210X.12067.

25. Kim T.H., Kim K.S., Choi B.H., Yoon D.H., Jang G.W., Lee K.T., Chung H.Y., Lee H.Y., Park H.S., Lee J.W. Genetic structure of pig breeds from Korea and China using microsatellite loci analysis. J. Anim. Sci. 2005;83:2255-2263.

26. Kramarenko S.S., Lugovoy S.I., Kharzinova V.R., Lykhach V.Y., Kramarenko A.S., Lykhach A.V. Genetic diversity of Ukrainian local pig breeds based on microsatellite markers. Regul. Mech. Biosyst. 2018; 9(2):177-182. DOI 10.15421/021826.

27. Meirmans P.G., Hedrick P.W. Assessing population structure: F(ST) and related measures. Mol. Ecol. Resour. 2011;11(1):5-18. DOI 10.1111/j.1755-0998.2010.02927.x.

28. Muñoz M., Bozzi R., García-Casco J., Núñez Y., Ribani A., Franci O., García F., Škrlep M., Schiavo G., Bovo S., Utzeri V.J., Charneca R., Martins J.M., Quintanilla R., Tibau J., Margeta V., Djurkin-Kušec I., Mercat M.J., Riquet J., Estellé J., Zimmer C., Razmaite V., Araujo J.P., Radović Č., Savić R., Karolyi D., Gallo M., Čandek-Potokar M., Fernández A.I., Fontanesi L., Óvilo C. Genomic diversity, linkage disequilibrium and selection signatures in European local pig breeds assessed with a high density SNP chip. Sci. Rep. 2019;9: 13546. DOI 10.1038/s41598-019-49830-6.

29. Novembre J., Johnson T., Bryc K., Kutalik Z., Boyko A.R. Genes mirror geography within Europe. Nature. 2008;456:98-101.

30. Patterson N., Price A.L., Reich D. Population structure and Eigen analysis. PLoS Genet. 2006;2(12):e190. DOI 10.1371/journal.pgen.0020190.

31. Peakall R., Smouse P.E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics. 2012;28:2537-2539. DOI 10.1093/bioinformatics/bts460.

32. Pritchard J.K., Stephens M., Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945-959. pmid: 10835412. R Core Team. R: a language and environment for statistical computing. R Foundation for statistical computing. Vienna, Austria, 2012. Available at http://www.Rproject.org

33. Reed D.H., Frankham R. Correlation between fitness and genetic diversity. Biol. Conserv. 2003;17:230-237.

34. Šalamon D., Margeta P., Klišanić V., Menčik S., Karolyi D., Mahnet Ž., Škorput D., Luković Z., Salajpal K. Genetic diversity of the Banija spotted pig breed using microsatellite markers. J. Centr. Eur. Agric. 2019;20:36-42.

35. Szmatoła T., Ropka-Molik K., Tyra M., Piórkowska K., Żukowski K., Oczkowicz M., Blicharski T. The genetic structure of five pig breeds maintained in Poland. Ann. Anim. Sci. 2016;16(4):1019-1027. DOI 10.1515/aoas-2016-0006.

36. Szulkin M., Bierne N., David P. Heterozygosity-fitness correlations: a time for reappraisal. Evolution. 2010;64:1202-1217.

37. Toro M., Fernández J., Caballero A. Molecular characterization of breeds and its use in conservation. Livest Sci. 2009;120:174-195. Vonholdt B.M., Stahler D.R., Smith D.W., Earl D.A., Pollinger J.P. The genealogy and genetic viability of reintroduced Yellowstone grey wolves. Mol. Ecol. 2008;17:252-274.

38. Vrtková I., Stehlík L., Putnová L., Kratochvílová L., Falková L. Genetic structure in three breeds of pigs populations using microsatellite markers in the Czech Republic. Research in Pig Breeding. 2012; 6(2):83-87.

39. Wagner A. Robustness and evaluability: a paradox resolved. Proc. Biol. Sci. 2008;275:91-100.

40. Weir B.S., Cockerham C.C. Estimating F-Statistics for the analysis of population structure. Evolution. 1984;38(6):1358-1370. DOI 10.2307/2408641.

41. Wickham H. ggplot2: Elegant graphics for data analysis. NY: Springer-Verlag, 2009.

42. Yue G.H., Wang G.L. Molecular genetic analysis of the Chinese Erhualian pig breed. S. Afr. J. Anim. Sci. 2003;33(3):159-165.


Review

Views: 1028


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)