Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Metabolic phenotype of adult mice offspring obtained from different variants of embryo transfer

https://doi.org/10.18699/VJ20.671

Abstract

Assisted reproductive technologies (ART) increasingly occupy the study of human reproduction. In addition, in developed countries they contribute to breeding of more than 50 % of cattle. In the management of collections of genetic lines of laboratory animals, these technologies are obligatory components of cryopreservation and rederivation. ART procedures include the development of early embryos outside the mother’s body and the high probability of incomplete synchronization of the physiological state of the surrogate mother and transplanted embryos. Since all this occurs at the stage of the highest susceptibility of embryos to epigenetic reprogramming, the full cycle of ART and its individual components can lead to stable phenotypic changes in the offspring. Their reality is confirmed by studies of the morphological and functional characteristics of sexually mature offspring of CD1 outbred mice, obtained using different variants of early embryo transplantation. Comparative studies of body mass and body composition, basal glucose level and response to glucose load (glucose-tolerance test – GTT) have been done on sexually mature males and females. Animals were separated in 4 groups according to the variant of embryo transplantation: group (control) – natural mating; group (2cl-bl) – incubation of 2-cell up to blastocysts; group (2cl-2cl) – removal and transplantation of the 2-cell embryo without incubation; group (Bl-bl) removal and transplantation of the blastocysts without incubation. All embryos were transplanted to recipient females of the same line. It was found that sexually mature offspring obtained with all variants of transplantations had a higher relative fat content and, correspondingly, lower lean mass compared to the control. This effect was more pronounced in females than in males. Unlike body compositions, embryo transplantations had a greater effect on basal glucose concentration and GTT in males than in females. In this case, the offspring of the 2cl-2cl and 2cl-bl groups were characterized by a higher tolerance to glucose load (GTT) compared with the control and the Bl-bl group. Stable deviations of body compositions and glucose homeostasis indices detected in experimental groups of progenies indicate the phenotypic significance of the embryo transplantations per se.

About the Authors

M. V. Anisimova
Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
Russian Federation
Novosibirsk


Ya. Gong
Novosibirsk State University
Russian Federation
Novosibirsk


N. S. Yudin
Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
Russian Federation
Novosibirsk


Yu. M. Moshkin
Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
Russian Federation
Novosibirsk


L. A. Gerlinskaya
Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
Russian Federation
Novosibirsk


References

1. Barker D.J. The origins of the developmental origins theory. J. Intern. Med. 2007;261(5):412-417. DOI 10.1111/j.1365-2796.2007.01809.x.

2. Bouillon C., Léandri R., Desch L., Ernst A., Bruno C., Cerf C., Chiron A., Souchay C., Burguet A., Jimenez C., Fauque P. Does embryo culture medium influence the health and development of children born after in vitro fertilization? PLoS ONE. 2016;11(3):e0150857. DOI 10.1371/journal.pone.0150857.

3. Burdge G.C., Hanson M.A., Slater-Jefferies J.L., Lillycrop K.A. Epigenetic regulation of transcription: a mechanism for inducing variations in phenotype (fetal programming) by differences in nutrition during early life? Br. J. Nutr. 2007;97(6):1036-1046. DOI 10.1017/S0007114507682920.

4. Ceelen M., van Weissenbruch M.M., Roos J.C., Vermeiden J.P., van Leeuwen F.E., Delemarre-van de Waal H.A. Body composition in children and adolescents born after in vitro fertilization or spontaneous conception. J. Clin. Endocrinol. Metab. 2007;92(9):3417-3423. DOI 10.1210/jc.2006-2896.

5. Ceelen M., van Weissenbruch M.M., Roos J.C., Vermeiden J.P., van Leeuwen F.E., Delemarre-van de Waal H.A. Cardiometabolic differences in children born after in vitro fertilization: Follow-up study. J. Clin. Endocrinol. Metab. 2008;93(5):1682-1688. DOI 10.1210/jc.2007-2432.

6. Ceelen M., van Weissenbruch M.M., Prein J., Smit J.J., Vermeiden J.P., Spreeuwenberg M., van Leeuwen F.E., Delemarre-van de Waal H.A. Growth during infancy and early childhood in relation to blood pressure and body fat measures at age 8–18 years of IVF children and spontaneously conceived controls born to subfertile parents. Hum. Reprod. 2009;24(11):2788-2795. DOI 10.1093/humrep/dep273.

7. Chen S., Sun F.Z., Huang X., Wang X., Tang N., Zhu B., Li B. Assisted reproduction causes placental maldevelopment and dysfunction linked to reduced fetal weight in mice. Sci. Rep. 2015;5:10596. DOI 10.1038/srep10596.

8. Davies M.J., Moore V.M., Willson K.J., Van Essen P., Priest K., Scott H., Haan E.A., Chan A. Reproductive technologies and the risk of birth defects. N. Engl. J. Med. 2012;366(19):1803-1813. DOI 10.1056/NEJMoa1008095.

9. Donjacour A., Liu X., Lin W., Simbulan R., Rinaudo P.F. In vitro fertilization affects growth and glucose metabolism in a sex-specific manner in an outbred mouse model. Biol. Reprod. 2014;90(4):80. DOI 10.1095/biolreprod.113.113134. Dumoulin J.C., Land J.A., Van Montfoort A.P., Nelissen E.C., Coonen E., Derhaag J.G., Schreurs I.L., Dunselman G.A., Kester A.D., Geraedts J.P., Evers J.L. Effect of in vitro culture of human embryos on birthweight of newborns. Hum. Reprod. 2010;25(3): 605-612. DOI 10.1093/humrep/dep456.

10. Duranthon V., Chavatte-Palmer P. Long term effects of ART: What do animals tell us? Mol. Reprod. Dev. 2018;85(4):348-368. DOI 10.1002/mrd.22970. Esh-Broder E., Ariel I., Abas-Bashir N., Bdolah Y., Celnikier D.H. Placenta accreta is associated with IVF pregnancies: a retrospective chart review. BJOG. 2011;118(9):1084-1089. DOI 10.1111/j.1471-0528.2011.02976.x. Farin P.W., Piedrahita J.A., Farin C.E. Errors in development of fetuses and placentas from in vitro-produced bovine embryos. Theriogenology. 2006;65(1):178-191. DOI 10.1016/j.theriogenology.2005.09.022.

11. Fernández-Gonzalez R., Moreira P., Bilbao A., Jiménez A., Pérez-Crespo M., Angel Ramírez M., Rodríguez De Fonseca F., Pintado B., Gutiérrez-Adán A. Long-term effect of in vitro culture of mouse embryos with serum on mRNA expression of imprinting genes, development, and behavior. Proc. Natl. Acad. Sci. USA. 2004;101(16): 5880-5885. DOI 10.1073/pnas.0308560101.

12. Feuer S.K., Liu X., Donjacour A., Lin W., Simbulan R.K., Giritharan G., Kolahi K., Ameri K., Maltepe E., Rinaudo P.F. Use of a mouse in vitro fertilization model to understand the developmental origins of health and disease hypothesis. Endocrinology. 2014;155(5):1956- 1969. DOI 10.1210/en.2013-2081.

13. Feuer S.K., Rinaudo P. Preimplantation stress and development. Birth Defects Res. C Embryo Today. 2012;96(4):299-314. DOI 10.1002/bdrc.21022.

14. Feuer S.K., Rinaudo P.F. Physiological, metabolic and transcriptional postnatal phenotypes of in vitro fertilization (IVF) in the mouse. J. Dev. Orig. Health Dis. 2017;8(4):403-410. DOI 10.1017/S204017441700023X.

15. Fleming T.P., Kwong W.Y., Porter R., Ursell E., Fesenko I., Wilkins A., Miller D.J., Watkins A.J., Eckert J.J. The embryo and its future. Biol. Reprod. 2004;71(4):1046-1054. DOI 10.1095/biolreprod.104.030957.

16. Fleming T.P., Velazquez M.A., Eckert J.J., Lucas E.S., Watkins A.J. Nutrition of females during the peri-conceptional period and effects on foetal programming and health of offspring. Anim. Reprod. Sci. 2012;130(3-4):193-197. DOI 10.1016/j.anireprosci.2012.01.015. Gerlinskaya L.A., Evsikov V.I. Influence of genetic dissimilarity of mother and fetus on progesterone concentrations in pregnant mice and adaptive features of offspring. Reproduction. 2001;121(3):409-117. DOI 10.1530/rep.0.1210409.

17. Gerlinskaya L.A., Litvinova E.A., Kontsevaya G.V., Feofanova N.A., Achasova K.M., Anisimova M.V., Maslennikova S.O., Zolotykh M.A., Moshkin Y.M., Moshkin M.P. Phenotypic variations in transferred progeny due to genotype of surrogate mother. Mol. Hum. Reprod. 2019;1:25(2):88-99. DOI 10.1093/molehr/gay052.

18. Haavaldsen C., Tanbo T., Eskild A. Placental weight in singleton pregnancies with and without assisted reproductive technology: a population study of 536,567 pregnancies. Hum. Reprod. 2012;27(2):576-582. DOI 10.1093/humrep/der428.

19. Hansen M., Kurinczuk J.J., Milne E., de Klerk N., Bower C. Assisted reproductive technology and birth defects: a systematic review and meta-analysis. Hum. Reprod. Update. 2013;19(4):330-353. DOI 10.1093/humupd/dmt006.

20. Helmerhorst F.M., Perquin D.A., Donker D., Keirse M.J. Perinatal outcome of singletons and twins after assisted conception: a systematic review of controlled studies. BMJ Open. 2004;328(7434):261. DOI 10.1136/bmj.37957.560278.EE.

21. International Committee for Monitoring Assisted Reproductive Technology (ICMART), European Society of Human Reproduction and Embryology Annual Meeting, 2012. Istanbul, Turkey. James E., Chai J.G., Dewchand H., Macchiarulo E., Dazzi F., Simpson E. Multiparity induces priming to male-specific minor histocompatibility antigen, HY, in mice and humans. Blood. 2003;102(1): 388-393. DOI 10.1182/blood-2002-10-3170.

22. Kahn D.A., Baltimore D. Pregnancy induces a fetal antigen-specific maternal T regulatory cell response that contributes to tolerance. Proc. Natl. Acad. Sci. USA. 2010;107(20):9299-9304. DOI 10.1073/pnas.1003909107.

23. Leese H.J. Metabolism of the preimplantation embryo: 40 years on. Reproduction. 2012;143(4):417-427. DOI 10.1530/REP-11-0484.

24. López-Cardona A.P., Fernández-González R., Pérez-Crespo M., Alén F., de Fonseca F.R., Orio L., Gutierrez-Adan A. Effects of synchronous and asynchronous embryo transfer on postnatal development, adult health, and behavior in mice. Biol. Reprod. 2015;93(4):85. DOI 10.1095/biolreprod.115.130385.

25. Moldenhauer L.M., Hayball J.D., Robertson S.A. Utilising T cell receptor transgenic mice to define mechanisms of maternal T cell tolerance in pregnancy. J. Reprod. Immunol. 2010;87(1-2):1-13. DOI 10.1016/j.jri.2010.05.007.

26. Mulligan C.J., D’Errico N.C., Stees J., Hughes D.A. Methylation changes at NR3C1 in newborns associate with maternal prenatal stress exposure and newborn birth weight. Epigenetics. 2012;7(8):853-857. DOI 10.4161/epi.21180.

27. Nelson S.M., Lawlor D.A. Predicting live birth, preterm delivery, and low birth weight in infants born from in vitro fertilisation: a prospective study of 144,018 treatment cycles. PLoS Med. 2011;8(1): e1000386. DOI 10.1371/journal.pmed.1000386.

28. Rehfeldt C., Kuhn G. Consequences of birth weight for postnatal growth performance and carcass quality in pigs as related to myogenesis. J. Anim. Sci. 2006;84(Suppl.):113-123. DOI 10.2527/2006.8413_supple113x.

29. Rinaudo P.F., Lamb J. Fetal origins of perinatal morbidity and/or adult disease. Semin. Reprod. Med. 2008;26(5):436-445. DOI 10.1055/s-0028-1087109.

30. Romundstad L.B., Romundstad P.R., Sunde A., von During V., Skjaerven R., Gunnell D., Vatten L.J. Effects of technology or maternal factors on perinatal outcome after assisted fertilisation: a populationbased cohort study. Lancet. 2008;372(9640):737-743. DOI 10.1016/S0140-6736(08)61041-7.

31. Sinclair K.D., Young L.E., Wilmut I., McEvoy T.G. In-utero overgrowth in ruminants following embryo culture: lessons from mice and a warning to men. Hum. Reprod. 2000;15(Suppl. 5):68-86. DOI 10.1093/humrep/15.suppl_5.68.

32. Taglauer E.S., Adams Waldorf K.M., Petroff M.G. The hidden maternal-fetal interface: events involving the lymphoid organs in maternal-fetal tolerance. Int. J. Dev. Biol. 2010;54(2-3):421-430. DOI 10.1387/ijdb.082800et.

33. Templeton A. Infertility and the establishment of pregnancy-over-view. Br. Med. Bul. 2000;56(3):577-587. DOI 10.1258/000714200 1903283.

34. Young L.E., Sinclair K.D., Wilmut I. Large offspring syndrome in cattle and sheep. Rev. Reprod. 1998;3(3):155-163. DOI 10.1530/ror.0.0030155.


Review

Views: 813


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)