1. Альперина Е.Л. Вклад допаминергической системы в механиз- мы иммуномодуляции. Успехи физиол. наук. 2014;45(3):45-56. https://elibrary.ru/item.asp?id=22265117
2. Григорьян Г.А., Дыгало Н.Н., Гехт А.Б., Степаничев М.Ю., Гуляева Н.В. Молекулярно-клеточные механизмы депрессии. Роль глюкокортикоидов, цитокинов, нейротрансмиттеров и трофических факторов в генезе депрессивных расстройств. Успехи физиол. наук. 2014;45(2):3-19.
3. Девойно Л.В., Идова Г.В., Альперина Е.Л. Психонейроиммуномодуляция: поведение и иммунитет. Роль «нейромедиаторной» установки мозга. Новосибирск: Наука, 2009. https://elibrary.ru/item.asp?id=19548477
4. Alperina E., Idova G., Zhukova E., Zhanaeva S., Kozhemyakina R. Cytokine variations within brain structures in rats selected for differences in aggression. Neurosci. Lett. 2019;692:193-198. https://doi.org/10.1016/j.neulet.2018.11.012.
5. Alperina E.L., Kulikov A.V., Popova N.K., Idova G.V. Immune response in mice of a new strain ASC (Antidepressants Sensitive Catalepsy). Bull. Exp. Biol. Med. 2007;144(2):221-223. https://doi.org/10.1007/s10517-007-0294-5.
6. Clapcote S.J., Lipina T.V., Millar J.K., Mackie S., Christie S., Ogawa F.,Lerch J.P., Trimble K., Uchiyama M., Sakuraba Y., Kaneda H., Shiroishi T., Houslay M.D., Henkelman R.M., Sled J.G., Gondo Y., Porteous D.J., Roder J.C. Behavioral phenotypes of Disc1 missense mutations in mice. Neuron. 2007;54(3):387-402. https://doi.org/10.1016/j.neuron.2007.04.015.
7. Dantzer R. Neuroimmune interactions: from the brain to the immune system and vice versa. Physiol. Rev. 2018;98(1):477-504. https://doi.org/10.1152/physrev.00039.2016.
8. Dubrovina N.I., Khrapova M.V., Lipina T.V. Characteristics of the formation of memories relating to fear in mice with depression- and schizophrenia-like phenotypes: effects of gender and age. Neurosci. Behav. Physiol. 2018;48(4):488-495. https://doi.org/10.1007/s11055-018-0590-8.
9. Dunn A.J. Effects of cytokines and infections on brain neurochemistry. Clin. Neurosci. Res. 2006;6(1-2):52-68. https://doi.org/10.1016/j.cnr.2006.04/002.
10. Felger J.C., Lotrich F.E. Inflammatory cytokines in depression: neurobiological mechanisms and therapeutic implications. Neuroscience. 2013;246:199-229. https://doi.org/10.1016/neuroscience.2013.04/060.
11. Haroon E., Raison C.L., Miller A.H. Psychoneuroimmunology meets neuropsychopharmacology: translational implications of the impact of inflammation on behavior. Neuropsychopharmacology. 2012; 37(1):137-162. https://doi.org/10.1038/npp.2011.205.
12. Hikida T., Gamo N.J., Sawa A. DISC1 as a therapeutic target for mental illnesses. Expert Opin. Ther. Targets. 2012;16(12):1151-1160. https://doi.org/10.1517/14728222.2012.719879.
13. Idova G., Alperina E., Gevorgyan M., Zhukova E., Kulikov A., Yur’ev D. T-lymphocyte subpopulation composition and the immune response in depression-like behavior in ASC mice. Neurosci. Behav. Physiol. 2013;43(8):946-950. https://doi.org/10.1007/s11055-013-9833-x.
14. Idova G., Alperina E., Plyusnina I., Gevorgyan M., Zhukova E., Konoshenko M., Kozhemyakina R., Wang S.W. Immune reactivity in rats selected for the enhancement or elimination of aggressiveness towards humans. Neurosci. Lett. 2015;609:103-108. https://doi.org/10.1016/j.neulet.2015.10.027.
15. Idova G.V., Al’perina E.L., Zhanaeva S.Ya., Gevorgyan M.M., Rogozhnikova A.A. Cytokine content in the hypothalamus and hippocampus of C57BL/6J mice with depressive-like behavior. Bull. Exp. Biol. Med. 2019;167(1):11-16. https://doi.org/10.1007/s10517-019-04450-y.
16. Idova G., Gevorgyan M., Alperina E., Zhanaeva S.Ya., Markova E.V. Cytokine production by splenic cells in C57BL/6J mice with depressive-like behavior depends on the duration of social stress. Bull. Exp. Biol. Med. 2018;164(5):645-649. https://doi.org/10.1007/s10517-018-4050-9.
17. Kawano M., Takagi R., Saika K., Matsui M., Matsushita S. Dopamine regulates cytokine secretion during innate and adaptive immune responses. Int. Immunol. 2018;30(12):591-606. https://doi.org/10.1093/intimm/dxy057.
18. Ladics G.S. Primary immune response to sheep red blood cells (SRBC) as the conventional T-cell dependent antibody response (TDAR) test. J. Immunotoxicol. 2007;4(2):149-152. https://doi.org/10.1080/15476910701337357.
19. Lesh T.A., Careaga M., Rose D.R., McAllister A.K., Van de Water J., Carter C.S. Ashwod P. Cytokine alterations in first-episode schizophrenia and bipolar disorder: relationships to brain structure and symptom. J. Neuroinf lammation. 2018;15:165. https://doi.org/10.1186/s12974-018-1197-2s.
20. Lipina T.V., Fletcher P.J., Lee F.H., Wong A.H., Roder J.C. Disruptedin-schizophrenia-1 Gln31Leu polymorphism results in social anhedonia associated with monoaminergic imbalance and reduction of CREB and β-arrestin-1,2 in the nucleus accumbens in a mouse model of depression. Neuropsychopharmacology. 2013;38(3):423-436. https://doi.org/10.1038/npp.2012.197.
21. Lipina T.V., Niwa M., Jaaro-Peled H., Fletcher P.J., Seeman P., Sawa A., Roder J.C. Enhanced dopamine function in DISC1-L100P mutant mice: implications for schizophrenia. Brain Behav. 2010;9:777-789. https://doi.org/10.1111/j.1601-183X.2010.00615.x.
22. Lipina T.V., Roder J.C. Disrupted-in-Schizophrenia-1 (DISC1) interactome and mental disorders: impact of mouse models. Neurosci. Biobehav. Rev. 2014;45:271-294. https://doi.org/10.1016/j.neubiorev.2014. 07.001.
23. Mathieson I., Munafò M.R., Flint J. Meta-analysis indicates that common variants at the DISC1 locus are not associated with schizophrenia. Mol. Psychiatry. 2012;17(6):634-641. https://doi.org/10.1038/mp.2011.41.
24. Ottaway С.A., Husband A. The influence of neuroendocrine pathways on lymphocyte migration. Immunol. Today. 1994;5(11):511-571. https://doi.org/10.1016/0167-5699(94)90206-2.
25. Saurer T.B., Carrigan K.A., Ijames S.G., Lysle D.T. Suppression of natural killer cell activity by morphine is mediated by the nucleus accumbens shell. J. Neuroimmunol. 2006;173(1-2):3-11. https://doi.org/10.1016/j.jneuroim.2005.11.009.
26. Serykh A., Khrapova M.V., Dubrovina N.I., Petrova E.S., Mikhnevich N., Starostina M.V., Amstyslavskaja T.G., Lipina T.V. The increased density of the habenular neurons, high impulsivity, aggression and resistant fear memory in Disc1-Q31L genetic mouse model of depression. Behav. Brain Res. 2020;392:112693. https://doi.org/10.1016/j.bbr.2020.112693.
27. Shoji H., Toyama K., Takamiya Y., Wakana S., Gondo Y., Miykawa T. Comprehensive behavioral analysis of ENU-induced Disc1-Q31L and -L100P mutant mice. BMC Res. Notes. 2012;5:108. https://doi.org/10.1186/1756-0500-5-108.
28. Steiner J., Jacobs R., Panteli B., Brauner M., Schiltz K., Bahn S., Herberth M., Westphal S., Gos T., Walter M., Bernstein H.G., Myint A.M., Bogerts B. Acute schizophrenia is accompanied by reduced T cell and increased B cell immunity. Eur. Arch. Psychiatry Clin. Neurosci. 2010;260(7):509-518. https://doi.org/10.1007/s00406-010-0098-x.
29. Takahashi A., Flanigan M.E., McEwen B.S., Russo S.J. Aggression, social stress, and the immune system in humans and animal models. Front. Behav. Neurosci. 2018;12:56. https://doi.org/10.3389/fnbeh.2018.00056.