Preview

Vavilov Journal of Genetics and Breeding

Advanced search

The composition of peripheral immunocompetent cell subpopulations and cytokine content in the brain structures of mutant Disc1-Q31L mice

https://doi.org/10.18699/VJ20.672

Abstract

The DISC1 (disrupted in sсhizophrenia 1) gene is associated with brain dysfunctions, which are involved in a variety of mental disorders, such as schizophrenia, depression and bipolar disorder. This is the first study to examine the immune parameters in Disc1-Q31L mice with a point mutation in the second exon of the DISC1 gene compared to mice of the C57BL/6NCrl strain (WT, wild type). A flow cytometry assay has shown that intact Disc1-Q31L mice differ from the WT strain by an increase in the percentage of CD3+ T cells, CD3+CD4+ Т helper cells and CD3+CD4+CD25+ T regulatory cells and a decrease in CD3+CD8+ T cytotoxic/suppressor cells in the peripheral blood. A multiplex analysis revealed differences in the content of cytokines in the brain structures of Disc1-Q31L mice compared to WT mice. The content of pro-inflammatory cytokines was increased in the frontal cortex (IL-6, IL- 17 and IFNγ) and striatum (IFNγ), and decreased in the hippocampus and hypothalamus. At the same time, the levels of IL-1β were decreased in all structures being examined. In addition, the content of anti-inflammatory cytokines IL-4 was increased in the frontal cortex, while IL-10 amount was decreased in the hippocampus. Immune response to sheep red blood cells analyzed by the number of antibody-forming cells in the spleen was higher in Disc1-Q31L mice at the peak of the reaction than in WT mice. Thus, Disc1-Q31L mice are characterized by changes in the pattern of cytokines in the brain structures, an amplification of the peripheral T-cell link with an increase in the content of the subpopulations of CD3+CD4+ T helpers and CD3+CD4+CD25+ T regulatory cells, as well as elevated immune reactivity to antigen in the spleen.

About the Authors

M. M. Gevorgyan
Scientific Research Institute of Physiology and Basic Medicine
Russian Federation
Novosibirsk


S. Ya. Zhanaeva
Scientific Research Institute of Physiology and Basic Medicine
Russian Federation
Novosibirsk


E. L. Alperina
Scientific Research Institute of Physiology and Basic Medicine
Russian Federation
Novosibirsk


T. V. Lipina
Scientific Research Institute of Physiology and Basic Medicine
Russian Federation
Novosibirsk


G. V. Idova
Scientific Research Institute of Physiology and Basic Medicine
Russian Federation
Novosibirsk


References

1. Al’perina E.L. Involvement of the dopaminergic system in the mechanisms of immunomodulation. Uspekhi Fiziologicheskikh Nauk = Advances in Physiological Sciences. 2014;45(3):45-56. Available at: https://elibrary.ru/item.asp?id=22265117. (in Russian)

2. Grigor’ian G.A., Dygalo N.N., Gekht A.B., Stepanichev M.Iu., Guliaeva N.V. Molecular and cellular mechanisms of depression. Role of glucocorticoids, cytokines, neurotransmitters, and trophic factors in genesis of depressive disorders. Uspekhi Fiziologicheskikh Nauk = Advances in Physiological Sciences. 2014;45(2):3-19. (in Russian)

3. Devoino L.V., Idova G.V., Аlperina E.L. Psychoneuroimmunomodulation: Behavior and Immunity. A Role of “Neuromediator Pattern of the Brain”, Novosibirsk: Nauka Publ., 2009. Available at: https:// elibrary.ru/item.asp?id=19548477 (in Russian)

4. Alperina E., Idova G., Zhukova E., Zhanaeva S., Kozhemyakina R. Cytokine variations within brain structures in rats selected for differences in aggression. Neurosci. Lett. 2019;692:193-198. DOI 10.1016/j.neulet.2018.11.012.

5. Alperina E.L., Kulikov A.V., Popova N.K., Idova G.V. Immune response in mice of a new strain ASC (Antidepressants Sensitive Catalepsy). Bull. Exp. Biol. Med. 2007;144(2):221-223. DOI 10.1007/s10517-007-0294-5.

6. Clapcote S.J., Lipina T.V., Millar J.K., Mackie S., Christie S., Ogawa F., Lerch J.P., Trimble K., Uchiyama M., Sakuraba Y., Kaneda H., Shiroishi T., Houslay M.D., Henkelman R.M., Sled J.G., Gondo Y., Porteous D.J., Roder J.C. Behavioral phenotypes of Disc1 missense mutations in mice. Neuron. 2007;54(3):387-402. DOI 10.1016/j.neuron.2007.04.015.

7. Dantzer R. Neuroimmune interactions: from the brain to the immune system and vice versa. Physiol. Rev. 2018;98(1):477-504. DOI 10.1152/physrev.00039.2016.

8. Dubrovina N.I., Khrapova M.V., Lipina T.V. Characteristics of the formation of memories relating to fear in mice with depression- and schizophrenia-like phenotypes: effects of gender and age. Neurosci. Behav. Physiol. 2018;48(4):488-495. DOI 10.1007/s11055-018-0590-8.

9. Dunn A.J. Effects of cytokines and infections on brain neurochemistry. Clin. Neurosci. Res. 2006;6(1-2):52-68. DOI 10.1016/j.cnr.2006.04/002.

10. Felger J.C., Lotrich F.E. Inflammatory cytokines in depression: neurobiological mechanisms and therapeutic implications. Neuroscience. 2013;246:199-229. DOI 10.1016/neuroscience.2013.04/060.

11. Haroon E., Raison C.L., Miller A.H. Psychoneuroimmunology meets neuropsychopharmacology: translational implications of the impact of inflammation on behavior. Neuropsychopharmacology. 2012; 37(1):137-162. DOI 10.1038/npp.2011.205.

12. Hikida T., Gamo N.J., Sawa A. DISC1 as a therapeutic target for mental illnesses. Expert Opin. Ther. Targets. 2012;16(12):1151-1160. DOI 10.1517/14728222.2012.719879.

13. Idova G., Alperina E., Gevorgyan M., Zhukova E., Kulikov A., Yur’ev D. T-lymphocyte subpopulation composition and the immune response in depression-like behavior in ASC mice. Neurosci. Behav. Physiol. 2013;43(8):946-950. DOI 10.1007/s11055-013-9833-x.

14. Idova G., Alperina E., Plyusnina I., Gevorgyan M., Zhukova E., Konoshenko M., Kozhemyakina R., Wang S.W. Immune reactivity in rats selected for the enhancement or elimination of aggressiveness towards humans. Neurosci. Lett. 2015;609:103-108. DOI 10.1016/j.neulet.2015.10.027.

15. Idova G.V., Al’perina E.L., Zhanaeva S.Ya., Gevorgyan M.M., Rogozhnikova A.A. Cytokine content in the hypothalamus and hippocampus of C57BL/6J mice with depressive-like behavior. Bull. Exp. Biol. Med. 2019;167(1):11-16. DOI 10.1007/s10517-019-04450-y.

16. Idova G., Gevorgyan M., Alperina E., Zhanaeva S.Ya., Markova E.V. Cytokine production by splenic cells in C57BL/6J mice with depressive-like behavior depends on the duration of social stress. Bull. Exp. Biol. Med. 2018;164(5):645-649. DOI 10.1007/s10517-018-4050-9.

17. Kawano M., Takagi R., Saika K., Matsui M., Matsushita S. Dopamine regulates cytokine secretion during innate and adaptive immune responses. Int. Immunol. 2018;30(12):591-606. DOI 10.1093/intimm/dxy057.

18. Ladics G.S. Primary immune response to sheep red blood cells (SRBC) as the conventional T-cell dependent antibody response (TDAR) test. J. Immunotoxicol. 2007;4(2):149-152. DOI 10.1080/15476910701337357.

19. Lesh T.A., Careaga M., Rose D.R., McAllister A.K., Van de Water J., Carter C.S. Ashwod P. Cytokine alterations in first-episode schizophrenia and bipolar disorder: relationships to brain structure and symptom. J. Neuroinf lammation. 2018;15:165. DOI 10.1186/s12974-018-1197-2s.

20. Lipina T.V., Fletcher P.J., Lee F.H., Wong A.H., Roder J.C. Disruptedin-schizophrenia-1 Gln31Leu polymorphism results in social anhedonia associated with monoaminergic imbalance and reduction of CREB and β-arrestin-1,2 in the nucleus accumbens in a mouse model of depression. Neuropsychopharmacology. 2013;38(3):423-436. DOI 10.1038/npp.2012.197.

21. Lipina T.V., Niwa M., Jaaro-Peled H., Fletcher P.J., Seeman P., Sawa A., Roder J.C. Enhanced dopamine function in DISC1-L100P mutant mice: implications for schizophrenia. Brain Behav. 2010;9:777-789. DOI 10.1111/j.1601-183X.2010.00615.x.

22. Lipina T.V., Roder J.C. Disrupted-in-Schizophrenia-1 (DISC1) interactome and mental disorders: impact of mouse models. Neurosci. Biobehav. Rev. 2014;45:271-294. DOI 10.1016/j.neubiorev.2014. 07.001.

23. Mathieson I., Munafò M.R., Flint J. Meta-analysis indicates that common variants at the DISC1 locus are not associated with schizophrenia. Mol. Psychiatry. 2012;17(6):634-641. DOI 10.1038/mp.2011.41.

24. Ottaway С.A., Husband A. The influence of neuroendocrine pathways on lymphocyte migration. Immunol. Today. 1994;5(11):511-571. DOI 10.1016/0167-5699(94)90206-2.

25. Saurer T.B., Carrigan K.A., Ijames S.G., Lysle D.T. Suppression of natural killer cell activity by morphine is mediated by the nucleus accumbens shell. J. Neuroimmunol. 2006;173(1-2):3-11. DOI 10.1016/j.jneuroim.2005.11.009.

26. Serykh A., Khrapova M.V., Dubrovina N.I., Petrova E.S., Mikhnevich N., Starostina M.V., Amstyslavskaja T.G., Lipina T.V. The increased density of the habenular neurons, high impulsivity, aggression and resistant fear memory in Disc1-Q31L genetic mouse model of depression. Behav. Brain Res. 2020;392:112693. DOI 10.1016/j.bbr.2020.112693.

27. Shoji H., Toyama K., Takamiya Y., Wakana S., Gondo Y., Miykawa T. Comprehensive behavioral analysis of ENU-induced Disc1-Q31L and -L100P mutant mice. BMC Res. Notes. 2012;5:108. DOI 10.1186/1756-0500-5-108.

28. Steiner J., Jacobs R., Panteli B., Brauner M., Schiltz K., Bahn S., Herberth M., Westphal S., Gos T., Walter M., Bernstein H.G., Myint A.M., Bogerts B. Acute schizophrenia is accompanied by reduced T cell and increased B cell immunity. Eur. Arch. Psychiatry Clin. Neurosci. 2010;260(7):509-518. DOI 10.1007/s00406-010-0098-x.

29. Takahashi A., Flanigan M.E., McEwen B.S., Russo S.J. Aggression, social stress, and the immune system in humans and animal models. Front. Behav. Neurosci. 2018;12:56. DOI 10.3389/fnbeh.2018.00056.

30.

31.

32.


Review

Views: 869


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)