Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Технология мРНК как одна из перспективных платформ для разработки вакцины против SARS-CoV-2

https://doi.org/10.18699/VJ20.676

Аннотация

После того как была опубликована последовательность генома SARS-CoV-2 (Severe acute respiratory syndrome-related coronavirus 2), а количество заболевших стало стремительно возрастать, многие глобальные компании начали разработку вакцины от данного вируса. Для создания вакцины задействованы практически все известные на данный момент способы – это вакцины на основе инактивированного вируса, мРНК и ДНК, вирусных векторов, синтетических пептидов и рекомбинантных белков, произведенных в клетках насекомых и млекопитающих. В обзоре рассматривается одна из перспективных вакцинных платформ, созданная на основе матричной РНК (мРНК). До недавнего времени мРНК-вакцинация не рассматривалась с практической точки зрения в силу высокой чувствительности к нуклеазной деградации и, как следствие, нестабильности препаратов на основе мРНК. Последние технологические достижения в значительной степени преодолели проблемы низкой иммуногенности, нестабильности и трудности доставки РНК-вакцин. Важно отметить, что мРНК-вакцины способны эффективно активизировать оба звена иммунитета – как Т-клеточный, так и гуморальный ответы. Существенным преимуществом мРНК-вакцин является быстрое недорогое масштабируемое и однотипное производство, обеспечивающее высокие выходы желаемого продукта в условиях in vitro. После синтеза и процедуры очистки технологически значительно проще добиться получения препарата мРНК инъекционной чистоты. Таким образом, производство мРНК путем транскрипции in vitro предпочтительнее в сравнении с производством ДНК-вакцин, так как в действительности является химическим процессом без использования клеток. По сравнению с производством вакцин на основе инактивированного вируса или рекомбинантного белка мРНК-технологии позволяют гораздо быстрее пройти все этапы разработки. Этот параметр имеет первостепенное значение для создания препаратов против вирусных патогенов, основной проблемой борьбы с которыми является временной разрыв между эпидемией и разработкой вакцины. В данном обзоре мы обсуждаем работы, связанные с разработкой вакцины против коронавирусов, включая SARS-CoV-2, с акцентом на технологии мРНК.

Об авторах

А. А. Ильичев
Государственный научный центр вирусологии и биотехнологии «Вектор» Роспотребнадзора
Россия
р. п. Кольцово, Новосибирская область


Л. А. Орлова
Государственный научный центр вирусологии и биотехнологии «Вектор» Роспотребнадзора
Россия
р. п. Кольцово, Новосибирская область


С. В. Шарабрин
Государственный научный центр вирусологии и биотехнологии «Вектор» Роспотребнадзора
Россия
р. п. Кольцово, Новосибирская область


Л. И. Карпенко
Государственный научный центр вирусологии и биотехнологии «Вектор» Роспотребнадзора
Россия
р. п. Кольцово, Новосибирская область


Список литературы

1. Capasso P.U., Kaczmarek J.C., Fenton O.S., Anderson D.G. Poly(betaamino ester)-co-poly(caprolactone) Terpolymers as Nonviral Vectors for mRNA Delivery In Vitro and In Vivo. Adv. Healthc. Mater. 2018;7(14):e1800249. DOI 10.1002/adhm.201800249.

2. de Wit E., Feldmann F., Cronin J., Jordan R., Okumura A., Thomas T., Scott D., Cihlar T., Feldmann H. Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERSCoV infection. Proc. Natl. Acad. Sci. USA. 2020;117(12):6771-6776. DOI 10.1073/pnas.1922083117.

3. Draft landscape of COVID-19 candidate vaccines. World Health Organization. 2020. Available at: https://www.who.int/who-documentsdetail/draft-landscape-of-covid-19-candidate-vaccines.

4. Gómez-Aguado I., Rodríguez-Castejón J., Vicente-Pascual M., Rodríguez-Gascón A., Solinís M.A., Del Pozo-Rodríguez A. Nanomedicines to Deliver mRNA: State of the Art and Future Perspectives. Nanomaterials (Basel ). 2020;10(2):364. DOI 10.3390/nano10020364.

5. Guan S., Rosenecker J. Nanotechnologies in delivery of mRNA therapeutics using nonviral vector-based delivery systems. Gene Therapy. 2017;24(3):133-143. DOI 10.1038/gt.2017.5.

6. He Y., Li J., Heck S. Lustigman S., Jiang S. Antigenic and immunogenic characterization of recombinant baculovirus-expressed severe acute respiratory syndrome coronavirus spike protein: Implication for vaccine design. J. Virol. 2006;80:5757-5767. DOI 10.1128/JVI.00083-06.

7. Houseley J., Tollervey D. The Many Pathways of RNA Degradation. Cell. 2009;136(4):763-776. DOI 10.1016/j.cell.2009.01.019.

8. Iavarone C., O’hagan D.T., Yu D., Delahaye N.F., Ulmer J.B. Mechanism of action of mRNA-based vaccines. Expert Rev. Vaccines. 2017;16(9):871-881. DOI 10.1080/14760584.2017.1355245.

9. Kauffman K.J., Webber M.J., Anderson D.G. Materials for non-viral intracellular delivery of messenger RNA therapeutics. J. Control. Release. 2016;240:227-234. DOI 10.1016/j.jconrel.2015.12.032.

10. Kim J.H., Kang M., Park E, Chung D.R., Kim J., Hwang E.S. A Simple and Multiplex Loop-Mediated Isothermal Amplification (LAMP) Assay for Rapid Detection of SARS-CoV. Biochip J. 2019;13(4): 341-351. DOI 10.1007/s13206-019-3404-3.

11. Kowalski P.S., Rudra A., Miao L., Anderson D.G. Delivering the Messenger: Advances in Technologies for Therapeutic mRNA Delivery. Mol. Ther. 2019;27(4):710-728. DOI 10.1016/j.ymthe.2019.02.012.

12. Liu M.A. A comparison of plasmid DNA and mRNA as vaccine technologies. Vaccines. 2019;7(2):37. DOI 10.3390/vaccines7020037.

13. Ng O.-W., Chia A., Tan A.T., Jadi R.S., Leong H.N., Bertoletti A., Tan Y.-J. Memory T cell responses targeting the SARS coronavirus persist up to 11 years post-infection. Vaccine. 2016;34(17):2008-2014. DOI 10.1016/j.vaccine.2016.02.063.

14. Pardi N., Hogan M.J., Porter F.W., Weissman D. mRNA vaccines – a new era in vaccinology. Nat. Rev. Drug Discov. 2018;17(4):261-279. DOI 10.1038/nrd.2017.243.

15. Pardi N., Hogan M.J., Weissman D. Recent advances in mRNA vaccine technology. Curr. Opin. Immunol. 2020;65:14-20. DOI 10.1016/j.coi.2020.01.008.

16. Rauch S., Jasny E., Schmidt K.E., Petsch B. New vaccine technologies to combat outbreak situations. Front. Immunol. 2018;9:1963. DOI 10.3389/fimmu.2018.01963.

17. Schwendener R.A. Liposomes as vaccine delivery systems: A review of the recent advances. Ther. Adv. Vaccines. 2014;2(6):159-182. DOI 10.1177/2051013614541440.

18. Sebastian M., Papachristofilou A., Weiss C., Früh M., Cathomas R., Hilbe W., Wehler T., Rippin G., Koch S.D., Scheel B., Fotin-Mleczek M., Heidenreich R., Kallen K.-J., Gnad-Vogt U., Zippelius A. Phase Ib study evaluating a self-adjuvanted mRNA cancer vaccine (RNActive®) combined with local radiation as consolidation and maintenance treatment for patients with stage IV non-small cell lung cancer. BMC Cancer. 2014;14:748. DOI 10.1186/1471-2407-14-748.

19. Tang F., Quan Y., Xin Z.T., Wrammert J., Ma M.-J., Lv H., Wang T.-B., Yang H., Richardus H.J., Liu W., Cao W.-Ch. Lack of peripheral memory B cell responses in recovered patients with severe acute respiratory syndrome: A six-year follow-up study. J. Immunol. 2011; 86(12):7264-7268. DOI 10.4049/jimmunol.0903490.

20. Wadhwa A., Aljabbari A., Lokras A., Foged C., Thakur A. Opportunities and challenges in the delivery of mRNA-based vaccines. Pharmaceutics. 2020;12(2):102. DOI 10.3390/pharmaceutics12020102. Yang Z.Y., Kong W.P., Huang Y., Roberts A., Murphy B.R, Subbarao K., Nabel G.J. A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature. 2004;428(6982):561-564. DOI 10.1038/nature02463.

21. Zhang C., Maruggi G., Shan H., Li J. Advances in mRNA vaccines for infectious diseases. Front. Immunol. 2019;10:594. DOI 10.3389/fimmu.2019.00594.

22. Zhou P., Yang X.-L., Wang X.-G., Hu B., Zhang L., Zhang W., Si H.- R, Zhu Y., Li B., Huang C.-L., Chen H.-D., Chen J., Luo Y., Guo H., Jiang R.-D., Liu M.-Q., Chen Y., Shen X.-R., Wang X., Zheng X.- S., Zhao K., Chen Q.-J., Deng F., Liu L.-Li., Yan B., Zhan F.-X., Wang Y.-Y., Xiao G.-F., Shi Z.-L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270-273. DOI 10.1038/s41586-020-2012-.

23. Zhou Y., Jiang S., Du L. Prospects for a MERS-CoV spike vaccine. Expert Rev. Vaccines. 2018;17(8):677-686. DOI 10.1080/14760584.2018.1506702.


Рецензия

Просмотров: 9722


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)