Preview

Vavilov Journal of Genetics and Breeding

Advanced search

mRNA technology as one of the promising platforms for the SARS-CoV-2 vaccine development

https://doi.org/10.18699/VJ20.676

Abstract

After the genome sequence of SARS-CoV-2 (Severe acute respiratory syndrome-related coronavirus 2) was published and the number of infected people began to increase rapidly, many global companies began to develop a vaccine. Almost all known approaches to vaccine design were applied for this purpose, including inactivated viruses, mRNA and DNA-vaccines, vaccines based on various viral vectors, synthetically generated peptides and recombinant proteins produced in cells of insects and mammals. This review considers one of the promising vaccine platforms based on messenger RNA. Until recent years, mRNA-vaccination was out of practical implementation due to high sensitivity to nuclease degradation and consequent instability of drugs based on mRNA. Latest technological advances significantly mitigated the problems of low immunogenicity, instability, and difficulties in RNA-vaccine delivery. It is worth noting that mRNA-vaccines can efficiently activate both components of the immune system, i. e. T-cell and humoral responses. The essential advantage of mRNA-vaccines includes fast, inexpensive, scalable and uniform production providing a large output of desirable products in vitro. Synthesis and purification processes significantly simplify the process technology of mRNA drugs with injectable purity. Thus, mRNA production via in vitro transcription is more advantageous as compared with DNA-vaccines since it is a chemical process without the use of cells. mRNA techniques make it possible to pass all the phases of vaccine development much faster in comparison with the production of vaccines based on inactivated viruses or recombinant proteins. This property is critically important when designing vaccines against viral pathogens as the main problem of disease control includes a time gap between an epidemic and vaccine development. This paper discusses studies on the development of vaccines against coronaviruses including SARS-CoV-2 with special attention to the mRNA technique.

About the Authors

A. A. Ilyichev
State Research Center of Virology and Biotechnology “Vector”
Russian Federation
Koltsovo, Novosibirsk region


L. A. Orlova
State Research Center of Virology and Biotechnology “Vector”
Russian Federation
Koltsovo, Novosibirsk region


S. V. Sharabrin
State Research Center of Virology and Biotechnology “Vector”
Russian Federation
Koltsovo, Novosibirsk region


L. I. Karpenko
State Research Center of Virology and Biotechnology “Vector”
Russian Federation
Koltsovo, Novosibirsk region


References

1. Capasso P.U., Kaczmarek J.C., Fenton O.S., Anderson D.G. Poly(betaamino ester)-co-poly(caprolactone) Terpolymers as Nonviral Vectors for mRNA Delivery In Vitro and In Vivo. Adv. Healthc. Mater. 2018;7(14):e1800249. DOI 10.1002/adhm.201800249.

2. de Wit E., Feldmann F., Cronin J., Jordan R., Okumura A., Thomas T., Scott D., Cihlar T., Feldmann H. Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERSCoV infection. Proc. Natl. Acad. Sci. USA. 2020;117(12):6771-6776. DOI 10.1073/pnas.1922083117.

3. Draft landscape of COVID-19 candidate vaccines. World Health Organization. 2020. Available at: https://www.who.int/who-documentsdetail/draft-landscape-of-covid-19-candidate-vaccines.

4. Gómez-Aguado I., Rodríguez-Castejón J., Vicente-Pascual M., Rodríguez-Gascón A., Solinís M.A., Del Pozo-Rodríguez A. Nanomedicines to Deliver mRNA: State of the Art and Future Perspectives. Nanomaterials (Basel ). 2020;10(2):364. DOI 10.3390/nano10020364.

5. Guan S., Rosenecker J. Nanotechnologies in delivery of mRNA therapeutics using nonviral vector-based delivery systems. Gene Therapy. 2017;24(3):133-143. DOI 10.1038/gt.2017.5.

6. He Y., Li J., Heck S. Lustigman S., Jiang S. Antigenic and immunogenic characterization of recombinant baculovirus-expressed severe acute respiratory syndrome coronavirus spike protein: Implication for vaccine design. J. Virol. 2006;80:5757-5767. DOI 10.1128/JVI.00083-06.

7. Houseley J., Tollervey D. The Many Pathways of RNA Degradation. Cell. 2009;136(4):763-776. DOI 10.1016/j.cell.2009.01.019.

8. Iavarone C., O’hagan D.T., Yu D., Delahaye N.F., Ulmer J.B. Mechanism of action of mRNA-based vaccines. Expert Rev. Vaccines. 2017;16(9):871-881. DOI 10.1080/14760584.2017.1355245.

9. Kauffman K.J., Webber M.J., Anderson D.G. Materials for non-viral intracellular delivery of messenger RNA therapeutics. J. Control. Release. 2016;240:227-234. DOI 10.1016/j.jconrel.2015.12.032.

10. Kim J.H., Kang M., Park E, Chung D.R., Kim J., Hwang E.S. A Simple and Multiplex Loop-Mediated Isothermal Amplification (LAMP) Assay for Rapid Detection of SARS-CoV. Biochip J. 2019;13(4): 341-351. DOI 10.1007/s13206-019-3404-3.

11. Kowalski P.S., Rudra A., Miao L., Anderson D.G. Delivering the Messenger: Advances in Technologies for Therapeutic mRNA Delivery. Mol. Ther. 2019;27(4):710-728. DOI 10.1016/j.ymthe.2019.02.012.

12. Liu M.A. A comparison of plasmid DNA and mRNA as vaccine technologies. Vaccines. 2019;7(2):37. DOI 10.3390/vaccines7020037.

13. Ng O.-W., Chia A., Tan A.T., Jadi R.S., Leong H.N., Bertoletti A., Tan Y.-J. Memory T cell responses targeting the SARS coronavirus persist up to 11 years post-infection. Vaccine. 2016;34(17):2008-2014. DOI 10.1016/j.vaccine.2016.02.063.

14. Pardi N., Hogan M.J., Porter F.W., Weissman D. mRNA vaccines – a new era in vaccinology. Nat. Rev. Drug Discov. 2018;17(4):261-279. DOI 10.1038/nrd.2017.243.

15. Pardi N., Hogan M.J., Weissman D. Recent advances in mRNA vaccine technology. Curr. Opin. Immunol. 2020;65:14-20. DOI 10.1016/j.coi.2020.01.008.

16. Rauch S., Jasny E., Schmidt K.E., Petsch B. New vaccine technologies to combat outbreak situations. Front. Immunol. 2018;9:1963. DOI 10.3389/fimmu.2018.01963.

17. Schwendener R.A. Liposomes as vaccine delivery systems: A review of the recent advances. Ther. Adv. Vaccines. 2014;2(6):159-182. DOI 10.1177/2051013614541440.

18. Sebastian M., Papachristofilou A., Weiss C., Früh M., Cathomas R., Hilbe W., Wehler T., Rippin G., Koch S.D., Scheel B., Fotin-Mleczek M., Heidenreich R., Kallen K.-J., Gnad-Vogt U., Zippelius A. Phase Ib study evaluating a self-adjuvanted mRNA cancer vaccine (RNActive®) combined with local radiation as consolidation and maintenance treatment for patients with stage IV non-small cell lung cancer. BMC Cancer. 2014;14:748. DOI 10.1186/1471-2407-14-748.

19. Tang F., Quan Y., Xin Z.T., Wrammert J., Ma M.-J., Lv H., Wang T.-B., Yang H., Richardus H.J., Liu W., Cao W.-Ch. Lack of peripheral memory B cell responses in recovered patients with severe acute respiratory syndrome: A six-year follow-up study. J. Immunol. 2011; 86(12):7264-7268. DOI 10.4049/jimmunol.0903490.

20. Wadhwa A., Aljabbari A., Lokras A., Foged C., Thakur A. Opportunities and challenges in the delivery of mRNA-based vaccines. Pharmaceutics. 2020;12(2):102. DOI 10.3390/pharmaceutics12020102. Yang Z.Y., Kong W.P., Huang Y., Roberts A., Murphy B.R, Subbarao K., Nabel G.J. A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature. 2004;428(6982):561-564. DOI 10.1038/nature02463.

21. Zhang C., Maruggi G., Shan H., Li J. Advances in mRNA vaccines for infectious diseases. Front. Immunol. 2019;10:594. DOI 10.3389/fimmu.2019.00594.

22. Zhou P., Yang X.-L., Wang X.-G., Hu B., Zhang L., Zhang W., Si H.- R, Zhu Y., Li B., Huang C.-L., Chen H.-D., Chen J., Luo Y., Guo H., Jiang R.-D., Liu M.-Q., Chen Y., Shen X.-R., Wang X., Zheng X.- S., Zhao K., Chen Q.-J., Deng F., Liu L.-Li., Yan B., Zhan F.-X., Wang Y.-Y., Xiao G.-F., Shi Z.-L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270-273. DOI 10.1038/s41586-020-2012-.

23. Zhou Y., Jiang S., Du L. Prospects for a MERS-CoV spike vaccine. Expert Rev. Vaccines. 2018;17(8):677-686. DOI 10.1080/14760584.2018.1506702.


Review

Views: 9719


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)