Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Гены-кандидаты продуктивности, выявленные при полногеномном поиске ассоциаций с показателями классности у овец породы российский мясной меринос

https://doi.org/10.18699/VJ20.681

Полный текст:

Аннотация

Полногеномный поиск ассоциаций позволяет идентифицировать локусы и отдельные полиморфизмы, связанные с формированием интересующих фенотипов. При полногеномном анализе у овец особо перспективным представляется изучение особей, отличающихся выдающимися показателями продуктивности – выставочных животных, представителей класса «суперэлита». Целью настоящего исследования явилось выявление новых генов-кандидатов хозяйственно ценных признаков на основе поиска однонуклеотидных полиморфизмов, ассоциированных с принадлежностью к различным бонитировочным классам, у баранов породы российский мясной меринос. Генотипирование животных выполнено с использованием ДНК-биочипов Ovine Infinium HD BeadChip (600K), поиск ассоциаций – с использованием программного обеспечения PLINK v. 1.07. Выявлены высокодостоверные ассоциации между принадлежностью животных к различным бонитировочным классам и частотой встречаемости отдельных однонуклеотидных полиморфизмов на хромосомах 2, 6, 10, 13 и 20. Большая часть замен с высокой достоверностью ассоциаций сконцентрирована на хромосоме 10 в области 30859297–31873769. Для поиска генов-кандидатов отобрано 15 полиморфизмов с наибольшей достоверностью ассоциаций (–log10(р) > 9). Определение местоположения анализируемых однонуклеотидных полиморфизмов относительно новейшей аннотации Oar_rambouillet_v1.0 позволило выявить 11 генов-кандидатов, предположительно, связанных с формированием комплекса фенотипических признаков животных выставочной группы: RXFP2, ALOX5AP, MEDAG, OPN5, PRDM5, PTPRT, TRNAS-GGA, EEF1A1, FRY, ZBTB21-like и B3GLCT-like. Перечисленные гены кодируют белки, вовлеченные в контроль клеточного цикла и репликации ДНК, регуляцию пролиферации и апоптоза клеток; участвующие в липидном и углеводном обменах, развитии воспалительного процесса и работе циркадных ритмов. Благодаря этому рассматриваемые гены-кандидаты могут влиять на формирование экстерьерных особенностей и продуктивные качества овец. Однако необходимы дальнейшие исследования, направленные на подтверждение влияния генов и определение точных механизмов этого воздействия на фенотип.

Об авторах

А. Ю. Криворучко
Всероссийский научно-исследовательский институт овцеводства и козоводства – филиал Северо-Кавказского федерального научного аграрного центра
Россия
Ставрополь


О. А. Яцык
Всероссийский научно-исследовательский институт овцеводства и козоводства – филиал Северо-Кавказского федерального научного аграрного центра
Россия
Ставрополь


Е. Ю. Сафарян
Всероссийский научно-исследовательский институт овцеводства и козоводства – филиал Северо-Кавказского федерального научного аграрного центра
Россия
Ставрополь


Список литературы

1. Abdoli R., Mirhoseini S.Z., Ghavi Hossein-Zadeh N., Zamani P., Moradi M.H., Ferdosi M.H., Gondro C. Genome-wide association study of first lambing age and lambing interval in sheep. Small Rumin. Res. 2019;178:43-45. DOI 10.1016/j.smallrumres.2019.07.014.

2. Amerhanov H.A., Egorov M.V., Selionova M.I., Shumaenko S.N., Efimova N.I. A new breed of sheep: Russian meat Merino. Sel’skokhozyajstvennyj Zhurnal = Agricultural Journal. 2018; 1(11):50-56. DOI 10.25930/0372-3054-2018-1-11-65-71. (in Russian)

3. Bermingham M.L., Bishop S.C., Woolliams J.A., Pong-Wong R., Allen A.R., McBride S.H., Ryder J.J., Wright D.M., Skuce R.A., McDowell S.W., Glass E.J. Genome-wide association study identifies novel loci associated with resistance to bovine tuberculosis. Heredity. 2014;112(5):543-551. DOI 10.1038/hdy.2013.137.

4. Boudon S., Henry-Berger J., Cassar-Malek I. Aggregation of omic data and secretome prediction enable the discovery of candidate plasma biomarkers for beef tenderness. In Int. J. Mol. Sci. 2020; 21(2):54-63. DOI 10.3390/ijms21020664.

5. Buhr E.D., Vemaraju S., Diaz N., Lang R.A., Van Gelder R.N. Neuropsin (OPN5) Mediates Local Light-Dependent Induction of Circadian Clock Genes and Circadian Photoentrainment in Exposed Murine Skin. Curr. Biol. 2019;29(20):3478-3487. DOI 10.1016/j.cub.2019.08.063.

6. Burkitt Wright E.M.M., Spencer H.L., Daly S.B., Manson F.D.C., Zeef L.A.H., Urquhart J., Zoppi N., Bonshek R., Tosounidis I., Mohan M., Madden C., Dodds A., Chandler K. E., Banka S., Au L., Clayton-Smith J., Khan N., Biesecker L.G., Wilson M., Black G.C.M. Mutations in PRDM5 in Brittle Cornea Syndrome Identify a Pathway Regulating Extracellular Matrix Development and Maintenance. Am. J. Hum. Genet. 2011;88(6):767-777. DOI 10.1016/j.ajhg.2011.05.007.

7. Dakhlan A., Moghaddar N., Gondro C., Werf J.H.J. Gene by birth type interaction in merino lamb. Proc. Assoc. Advmt. Anim. Breed. Genet. 2018;22:45-48.

8. Dapas B., Pozzato G., Zorzet S., Capolla S., Paolo M., ScaggianteB., Coan M., Guerra C., Gnan C., Gattei V., Zanconati F., Grassi G. Effects of eEF1A1 targeting by aptamer/siRNA in chronic lymphocytic leukaemia cells. Int. J. Pharm. 2020;57(4):48-59. DOI 10.1016/j.ijpharm.2019.118895.

9. Dominik S., Henshall J.M., Hayes B.J. A single nucleotide polymorphism on chromosome 10 is highly predictive for the polled phenotype in Australian Merino sheep. Anim. Genet. 2012; 43(4):468-470. DOI 10.1111/j.1365-2052.2011.02271.x.

10. Duijvesteijn N., Bolormaa S., Daetwyler H.D., Van Der Werf J.H.J. Genomic prediction of the polled and horned phenotypes in Merino sheep. Genet. Sel. Evol. 2018;50(1):1-11. DOI 10.1186/s12711-018-0398-6.

11. Edea Z., Jeoung Y.H., Shin S.S., Ku J., Seo S., Kim I.H., Kim S.W., Kim K.S. Genome–wide association study of carcass weight in commercial Hanwoo cattle. Asian-Australas. J. Anim. Sci. 2018; 31(3): 327-334. DOI 10.5713/ajas.17.0276.

12. García-Gámez E., Gutiérrez-Gil B., Sahana G., Sánchez J.P., Bayón Y., Arranz J.J. GWA Analysis for Milk Production Traits in Dairy Sheep and Genetic Support for a QTN Influencing Milk Protein Percentage in the LALBA Gene. PLoS ONE. 2012; 7(10):1-9. DOI 10.1371/journal.pone.0047782.

13. Georges M., Charlier C., Hayes B. Harnessing genomic information for livestock improvement. Nat. Rev. Genet. 2019;20(3): 135-156. DOI 10.1038/s41576-018-0082-2.

14. Gudmundsdottir O.O. Genome-wide association study of muscle traits in Icelandic sheep. Agricultural University of Iceland, 2015.

15. Johnston S.E., Gratten J., Berenos C., Pilkington J.G., CluttonBrock T.H., Pemberton J.M., Slate J. Life history trade-offs at a single locus maintain sexually selected genetic variation. Nature. 2013;502(7469):93-95. DOI 10.1038/nature12489.

16. Johnston S.E., McEwan J.C., Pickering N.K., Kijas J.W., Beraldi D., Pilkington J.G., Pemberton J. M., Slate J. Genome-wide association mapping identifies the genetic basis of discrete and quantitative variation in sexual weaponry in a wild sheep population. Mol. Ecol. 2011;20(12):2555-2566. DOI 10.1111/j.1365-294X.2011.05076.x.

17. Kamiński S., Hering D.M., Oleński K., Lecewicz M., Kordan W. Genome-wide association study for sperm membrane integrity in frozen-thawed semen of Holstein-Friesian bulls. Anim. Reprod. Sci. 2016;170:135-140. DOI 10.1016/j.anireprosci.2016.05.002.

18. Kijas J.W., Serrano M., Mcculloch R., Li Y., Salces Ortiz J., Calvo J.H., Pérez-Guzmán M.D. Genomewide association for a dominant pigmentation gene in sheep. J. Anim. Breed. Genet. 2013;130(6):468-475. DOI 10.1111/jbg.12048.

19. Lee J.R. Protein tyrosine phosphatase PTPRT as a regulator of synaptic formation and neuronal development. BMB Rep. 2015; 48(5):249-255. DOI 10.5483/BMBRep.2015.48.5.037.

20. Liu Y., Chen X., Gong Z., Zhang H., Fei F., Tang X., Wang J., Xu P., Zarbl H., Ren X. Fry Is Required for Mammary Gland Development During Pregnant Periods and Affects the Morphology and Growth of Breast Cancer Cells. Front. Oncol. 2019;4(2):1-12. DOI 10.3389/fonc.2019.01279.

21. Mastrangelo S., Moioli B., Ahbara A., Latairish S., Portolano B., Pilla F., Ciani E. Genome-wide scan of fat-tail sheep identifies signals of selection for fat deposition and adaptation. Anim. Prod. Sci. 2019;59(5):835-842. DOI 10.1071/AN17753.

22. Moioli B., Pilla F., Ciani E. Signatures of selection identify loci associated with fat tail in sheep. J. Anim. Sci. 2015;93(10):4660- 4669. DOI 10.2527/jas.2015-9389.

23. Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M.A.R., Bender D., Maller J., Sklar P., Bakker P.I.W., Daly M.J., Sham P.C. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007; 81(3):559-575. DOI 10.1086/519795.

24. Rossi U.A., Hasenauer F.C., Caffaro M.E., Neumann R., Salatin A., Poli M.A., Rossetti C.A. A haplotype at intron 8 of PTPRT gene is associated with resistance to Brucella infection in Argentinian creole goats. Vet. Microbiol. 2017;2(3):133 137. DOI 10.1016/j.vetmic.2017.06.001.

25. Rovadoscki G.A., Pertile S.F.N., Alvarenga A.B., Cesar A.S.M., Pértille F., Petrini J., Franzo V., Soares W.V.B., Morota G., Spangler M.L., Pinto L.F.B., Carvalho G.G.P., Lanna D.P.D., Coutinho L.L., Mourão G.B. Estimates of genomic heritability and genome-wide association study for fatty acids profile in Santa Inеs sheep. BMC Genom. 2018;19(1):1-14. DOI 10.1186/ s12864-018-4777-8.

26. Scott D.J., Rosengren K.J., Bathgate R.A.D. The different ligandbinding modes of relaxin family peptide receptors RXFP1 and RXFP2. Mol. Endocrinol. 2012;26(11):1896-1906. DOI 10.1210/me.2012-1188.

27. Selionova M.I., Shumaenko S.N., Efimova N.I. Surov A.I. Bobrishov S.S. Target indicators and characteristics of the Russian Meat Merino breed: Proceedings of the Research Institute for Sheep and Goat Farming. Sel’skokhozyajstvennyj Zhurnal = Agricultural Journal. 2017;2(10):10-16. (in Russian)

28. Wang J., Kudoh J., Takayanagi A., Shimizu N. Novel human BTB/ POZ domain-containing zinc finger protein ZNF295 is directly associated with ZFP161. Biochem. Biophys. Res. Commun. 2005;327(2):615-627. DOI 10.1016/j.bbrc.2004.12.048.

29. Wang Z., Zhang H., Yang H., Wang S., Rong E., Pei W., Li H., Wang N. Genome-wide association study for wool production traits in a Chinese merino sheep population. PLoS ONE. 2014; 9(9):3-10. DOI 10.1371/journal.pone.0107101.

30. Weh E., Takeuchi H., Muheisen S., Haltiwanger R.S., Semina E.V. Functional characterization of zebrafish orthologs of the human Beta 3-Glucosyltransferase B3GLCT gene mutated in Peters Plus Syndrome. PLoS ONE. 2017;12(9):e0184903. DOI 10.1371/journal.pone.0184903.

31. Wiedemar N., Drögemüller C.A 1.8-kb insertion in the 3′-UTR of RXFP2 is associated with polledness in sheep. Anim. Genet. 2015;46(4):457-461. DOI 10.1111/age.12309.

32. Xu S.S., Gao L., Xie X.L., Ren Y.L., Shen Z.Q., Wang F., Shen M., Eypórsdóttir E., Hallsson J.H., Kiseleva T., Kantanen J., Li M.H. Genome-wide association analyses highlight the potential for dif¬ferent genetic mechanisms for litter size among sheep breeds. Front. Genet. 2018;6(2):1-14. DOI 10.3389/fgene.2018.00118.

33. Yan J., Dukkipati V., Blair H.T., Biggs P.J., Hamie J.C., Aw G. A genome-wide scan of positive selection signature using Ovine Infinium HD SNP BeadChip in two Romney lines, selected for resistance or resilience to nematodes. Anim. Genet. 2017;4: 87-94.

34. Zhang H., Chen X., Sairam M.R. Novel genes of visceral adiposity: Identification of mouse and human Mesenteric Estrogen-Dependent Adipose (MEDA)-4 gene and its adipogenic function. Endocrinology. 2012;153(6):2665-2676. DOI 10.1210/en.2011- 2008.

35. Zhang T., Gao H., Sahana G., Zan Y., Fan H., Liu J., Shi L., Liu J., Du L., Wang L., Zhao F. Genome-wide association studies revealed candidate genes for tail fat deposition and body size in the Hulun Buir sheep. J. Anim. Breed. Genet. 2019;6(1):1-9. DOI 10.1111/jbg.12402.


Просмотров: 48


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-0462 (Print)
ISSN 2500-3259 (Online)