Impact of sex on the adaptation of adult mice to long consumption of sweet-fat diet
https://doi.org/10.18699/VJ20.682
Abstract
In rodents, the most adequate model of human diet-induced obesity is obesity caused by the consumption of a sweet-fat diet (SFD), which causes more pronounced adiposity in females than in males. The aim of this work was to determine the sex-associated effect of SFD on the expression of genes related to carbohydrate-lipid metabolism in adult mice. For 10 weeks, male and female С57Bl mice were fed a standard laboratory chow (Control group) or a diet, which consisted of laboratory chow supplemented with sweet cookies, sunflower seeds and lard (SFD group). Weights of body, liver and fat depots, blood concentrations of hormones and metabolites, liver fat, and mRNA levels of genes involved in regulation of energy metabolism in the liver, perigonadal and subcutaneous white adipose tissue (pgWAT, scWAT) and brown adipose tissue (BAT) were measured. SFD increased body weight and insulin resistance in mice of both sexes. Female mice that consumed SFD (SFD females) had a greater increase in adiposity than SFD males. SFD females showed a decreased expression of genes related to lipogenesis (Lpl) and glucose metabolism (G6pc, Pklr) in liver, as well as lipogenesis (Lpl, Slca4) and lipolysis (Lipe) in pgWAT, suggesting reduced energy expenditure. In contrast, SFD males showed increased lean mass gain, plasma insulin and FGF21 levels, expressions of Cpt1α gene in pgWAT and scWAT and Pklr gene in liver, suggesting enhanced lipid and glucose oxidation in these organs. Thus, in mice, there are sex-dependent differences in adaptation to SFD at the transcriptional level, which can help to explain higher adiposity in females under SFD consumtion.
Keywords
About the Authors
N. M. BazhanRussian Federation
Novosibirsk
T. V. Iakovleva
Russian Federation
Novosibirsk
A. D. Dubinina
Russian Federation
Novosibirsk
E. N. Makarova
Russian Federation
Novosibirsk
References
1. Bazhan N., Jakovleva T., Balyibina N., Dubinina A., Denisova E., Feofanova N., Makarova E. Sex dimorphism in the Fgf 21 gene expression in liver and adipose tissues is dependent on the metabolic condition. Online J. Biol. Sci. 2019;19(1):28-36. DOI 10.3844/ojbsci.2019.28.36.
2. Burcelin R., Kande J., Ricquier D., Girard J. Changes in uncoupling protein and GLUT4 glucose transporter expressions in interscapular brown adipose tissue of diabetic rats: relative roles of hyperglycaemia and hypoinsulinaemia. Biochem. J. 1993;291(Pt. 1(1)):109-113. DOI 10.1042/bj2910109.
3. Buyukdere Y., Gulec A., Akyol A. Cafeteria diet increased adiposity in comparison to high fat diet in young male rats. PeerJ. 2019;7(4): e6656. DOI 10.7717/peerj.6656.
4. Camporez J.P.G., Jornayvaz F.R., Petersen M.C., Pesta D., Guigni B.A., Serr J., Zhang D., Kahn M., Samuel V.T., Jurczak M.J., Shulman G.I. Cellular mechanisms by which FGF21 improves insulin sensitivity in male mice. Endocrinol. 2013;154(9):3099-3109. DOI 10.1210/en.2013-1191.
5. Cannon B., Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol. Rev. 2004;84(1):277-359. DOI 10.1152/physrev.00015.2003.
6. Chang E., Varghese M., Singer K. Gender and sex differences in adipose tissue. Curr. Diab. Rep. 2018;18(9):69. DOI 10.1007/s11892-018-1031-3.
7. Chau M.D.L., Gao J., Yang Q., Wu Z., Gromada J. Fibroblast growth factor 21 regulates energy metabolism by activating the AMPK– SIRT1–PGC-1α pathway. Proc. Natl. Acad. Sci. USA. 2010;107(28): 12553-12558. DOI 10.1073/pnas.1006962107.
8. Chavez A.O., Molina-Carrion M., Abdul-Ghani M.A., Folli F., Defronzo R.A., Tripathy D. Circulating fibroblast growth factor-21 is elevated in impaired glucose tolerance and type 2 diabetes and correlates with muscle and hepatic insulin resistance. Diabetes Care. 2009;32(8):1542-1546. DOI 10.2337/dc09-0684.
9. Chukijrungroat N., Khamphaya T., Weerachayaphorn J., Songserm T., Saengsirisuwan V. Hepatic FGF21 mediates sex differences in highfat high-fructose diet-induced fatty liver. Am. J. Physiol. Endocrinol. Metab. 2017;313(2):E203-E212. DOI 10.1152/ajpendo.00076.2017.
10. Coskun T., Bina H.A., Schneider M.A., Dunbar J.D., Hu C.C., Chen Y., Moller D.E., Kharitonenkov A. Fibroblast growth factor 21 corrects obesity in mice. Endocrinol. 2008;149(12):6018-6027. DOI 10.1210/en.2008-0816.
11. Czech M.P. Mechanisms of insulin resistance related to white, beige, and brown adipocytes. Mol. Metab. 2020;3427-3442. DOI 10.1016/j.molmet.2019.12.014.
12. Dieudonne M.N., Pecquery R., Leneveu M.C., Giudicelli Y. Opposite effects of androgens and estrogens on adipogenesis in rat preadipocytes: Evidence for sex and site-related specificities and possible involvement of insulin-like growth factor 1 receptor and peroxisome proliferator-activated receptor γ2. Endocrinol. 2000;141(2):649- 656. DOI 10.1210/endo.141.2.7293.
13. Fisher F.M., Chui P.C., Antonellis P.J., Bina H.A., Kharitonenkov A., Flier J.S., Maratos-Flier E. Obesity is a fibroblast growth factor 21 (FGF21)-resistant state. Diabetes. 2010;59(11):2781-2789. DOI 10.2337/db10-0193.
14. Gasparin F.R.S., Carreño F.O., Mewes J.M., Gilglioni E.H., Pagadigorria C.L.S., Natali M.R.M., Utsunomiya K.S., Constantin R.P., Ouchida A.T., Curti C., Gaemers I.C., Elferink R.P.J.O., Constantin J., Ishii-Iwamoto E.L. Sex differences in the development of hepatic steatosis in cafeteria diet-induced obesity in young mice. Biochim. Biophys. Acta Mol. Basis Dis. 2018;1864(7):2495-2509. DOI 10.1016/j.bbadis.2018.04.004.
15. Macotela Y., Boucher J., Tran T.T., Kahn C.R. Sex and depot differences in adipocyte insulin sensitivity and glucose metabolism. Diabetes. 2009;58(4):803-812. DOI 10.2337/db08-1054.
16. Mauvais-Jarvis F. Sex differences in metabolic homeostasis, diabetes, and obesity. Biol. Sex Differ. 2015;6(1):14. DOI 10.1186/s13293-015-0033-y.
17. Medrikova D., Jilkova Z.M., Bardova K., Janovska P., Rossmeisl M., Kopecky J. Sex differences during the course of diet-induced obesity in mice: adipose tissue expandability and glycemic control. Int. J. Obes. (Lond.). 2012;36(2):262-272. DOI 10.1038/ijo.2011.87.
18. Penna-de-Carvalho A., Graus-Nunes F., Rabelo-Andrade J., Mandarimde-Lacerda C.A., Souza-Mello V. Enhanced pan-peroxisome proliferator-activated receptor gene and protein expression in adipose tissue of diet-induced obese mice treated with telmisartan. Exp. Physiol. 2014;99(12):1663-1678. DOI 10.1113/expphysiol.2014.081596.
19. Priego T., Sánchez J., Picó C., Palou A. Sex-differential expression of metabolism-related genes in response to a high-fat diet. Obesity (Silver Spring). 2008;16(4):819-826. DOI 10.1038/oby.2007.117.
20. Rodríguez E., Monjo M., Rodríguez-Cuenca, S., Pujol E., Amengual B., Roca P., Palou A. Sexual dimorphism in the adrenergic control of rat brown adipose tissue response to overfeeding. Pf lügers Arch. 2001;442:396-403. DOI:10.1007/s004240100556.
21. Rodríguez A.M., Roca P., Bonet M.L., Picó C., Oliver P., Palou A. Positive correlation of skeletal muscle UCP3 mRNA levels with overweight in male, but not in female, rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003;285(4):R880-8. DOI 10.1152/ajpregu.00698.2002.
22. Sampey B.P., Vanhoose A.M., Winfield H.M., Freemerman A.J., Muehlbauer M.J., Fueger P.T., Newgard C.B., Makowski L. Cafeteria diet is a robust model of human metabolic syndrome with liver and adipose inflammation: comparison to high-fat diet. Obesity. 2011;19(6):1109–1117. DOI 10.1038/oby.2011.18.
23. Sasaki Y., Raza-Iqbal S., Tanaka T., Murakami K., Anai M., Osawa T., Matsumura Y., Sakai J., Kodama T. Gene expression profiles induced by a novel selective peroxisome proliferator-activated receptor α modulator (SPPARMα) pemafibrate. Int. J. Mol. Sci. 2019; 20(22):5682. DOI 10.3390/ijms20225682.
24. Warfel J.D., Vandanmagsar B., Dubuisson O.S., Hodgeson S.M., Elks C.M., Ravussin E., Mynatt R.L. Examination of carnitine palmitoyltransferase 1 abundance in white adipose tissue: implications in obesity research. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2017;312(5):R816-R820. DOI 10.1152/ajpregu.00520.2016.
25. Wu Y., Lee M.-J., Ido Y., Fried S.K. High-fat diet-induced obesity regulates MMP3 to modulate depot- and sex-dependent adipose expansion in C57BL/6J mice. Am. J. Physiol. Endocrinol. Metab. 2017; 312(1):E58-E71. DOI 10.1152/ajpendo.00128.2016.
26. Xu J., Stanislaus S., Chinookoswong N., Lau Y.Y., Hager T., Patel J., Ge H., Weiszmann J., Lu S.-C., Graham M., Busby J., Hecht R., Li Y.-S., Li Y., Lindberg R., Véniant M.M. Acute glucose-lowering and insulin-sensitizing action of FGF21 in insulin-resistant mouse models-association with liver and adipose tissue effects. Am. J. Physiol. Endocrinol. Metab. 2009;297(5):E1105-E1114. DOI 10.1152/ajpendo.00348.2009.
27. Zhang J., Li Y. Fibroblast growth factor 21, the endocrine FGF pathway and novel treatments for metabolic syndrome. Drug Discov. Today. 2014;19(5):579-589. DOI 10.1016/j.drudis.2013.10.021.
28. Zhang X., Yeung D.C.Y., Karpisek M., Stejskal D., Zhou Z.-G., Liu F., Wong R.L.C., Chow W.-S., Tso A.W.K., Lam K.S.L., Xu A. Serum FGF21 levels are increased in obesity and are independently associated with the metabolic syndrome in humans. Diabetes. 2008;57(5): 1246-1253. DOI 10.2337/db07-1476.