Роль микроРНК в обучении и долговременной памяти
https://doi.org/10.18699/VJ20.687
Аннотация
Механизмы формирования долговременной памяти и способы ее улучшения (в случае нарушения) остаются сложнейшей нерешенной проблемой. В последние годы большое внимание в этой связи уделяется микроРНК. МикроРНК являются уникальными эндогенными некодирующими РНК длиной около 22 нуклеотидов, каждая из которых может регулировать трансляцию сотен матричных РНК, тем самым управляя целыми сетями генов. МикроРНК широко представлены в центральной нервной системе. В настоящее время значительное количество исследований посвящено изучению роли микроРНК в функционировании мозга. Показано, что целый ряд микроРНК вовлечен в процесс синаптической пластичности, а также в формирование долговременной памяти. При этом нарушение биогенеза микроРНК приводит к значительным когнитивным дисфункциям. Более того, нарушение биогенеза микроРНК является одной из причин патогенеза заболеваний, связанных с психическими расстройствами, нейродегенеративными патологиями и старческой деменцией, которые часто сопровождаются ухудшением способности к обучению и нарушением памяти. Высказываются оптимистичные прогнозы, что микроРНК могут быть использованы в качестве мишеней для терапевтического лечения и диагностики данных патологий. Важное прикладное значение микроРНК увеличивает интерес к изучению их функций в работе мозга. Представленный обзор посвящен роли микроРНК в когнитивных процессах. Описаны биогенез микроРНК и роль микроРНК в регуляции экспрессии генов. Рассмотрены последние достижения в изучении функциональной роли микроРНК в обучении и формировании долговременной памяти, в зависимости от активации или ингибирования их экспрессии, и о влиянии нарушения биогенеза микроРНК на формирование долговременной памяти. Небольшой раздел посвящен влиянию депривации сна на когнитивные процессы, зависимые от микроРНК. Кроме того, приведен анализ текущей литературы, связанной с перспективами улучшения когнитивных функций посредством влияния на биогенез микроРНК путем применения CRISPR/Cas9 технологий и активных умственных и физических нагрузок.
Об авторе
Л. Н. ГринкевичРоссия
Санкт-Петербург
Список литературы
1. Ai J., Sun L.H., Che H., Zhang R., Zhang T.Z., Wu W.C., Su X.L., Chen X., Yang G., Li K., Wang N., Ban T., Bao Y.N., Guo F., Niu H.F., Zhu Y.L., Zhu X.Y., Zhao S.G., Yang B.F. MicroRNA195 protects against dementia induced by chronic brain hypoperfusion via its anti-amyloidogenic effect in rats. J. Neurosci. 2013;33(9):3989-4001. https://doi.org/10.1523/JNEUROSCI.1997-12.2013. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6619292.
2. Aksoy-Aksel A., Zampa F., Schratt G. MicroRNAs and synaptic plasticity - a mutual relationship. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014;369(1652):20130515. https://doi.org/10.1098/rstb.2013.0515. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4142036.
3. Aquino-Jarquin G. Emerging role of CRISPR/Cas9 technology for microRNAs editing in cancer research. Cancer Res. 2017;77(24): 6812-6817. https://doi.org/10.1158/0008-5472.CAN-17-2142. https://cancerres.aacrjournals.org/content/77/24/6812.long.
4. Aten S., Hansen K.F., Snider K., Wheaton K., Kalidindi A., Garcia A., Alzate-Correa D., Hoyt K.R., Obrietan K. miR-132 couples the circadian clock to daily rhythms of neuronal plasticity and cognition. Learn. Mem. 2018;25(5):214-229. https://doi.org/10.1101/lm.047191.117. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5903403.
5. Baby N., Alagappan N., Dheen S.T., Sajikumar S. MicroRNA-134-5p inhibition rescues long-term plasticity and synaptic tagging/capture in an Aβ(1-42)-induced model of Alzheimer’s disease. Aging Cell. 2020;19(1):e13046. https://doi.org/10.1111/acel.13046. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6974725.
6. Baek S., Hwan C., Kim J. Ebf3-miR218 regulation is involved in the development of dopaminergic neurons. Brain Res. 2014;1587: 23-32. https://doi.org/10.1016/j.brainres.2014.08.059. https://pubmed.ncbi.nlm.nih.gov/25192643.
7. Banks S.A., Pierce M.L., Soukup G.A. Sensational microRNAs: neurosensory roles of the microRNA-183 family. Mol. Neurobiol. 2020;57(1):358-371. https://doi.org/10.1007/s12035-019-01717-3. https://link.springer.com/article/10.1007/s12035-019-01717-3.
8. Bartel D.P. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215-233. https://doi.org/10.1016/j.cell.2009.01.002. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3794896.
9. Benito E., Kerimoglu C., Ramachandran B., Pena-Centeno T., Jain G., Stilling R.M., Islam M.R., Capece V., Zhou Q., Edbauer D., Dean C., Fischer A. RNA-dependent intergenerational inheritance of enhanced synaptic plasticity after environmental enrichment. Cell Rep. 2018;23(2):546-554. https://doi.org/10.1016/j.celrep.2018.03.059. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5912949.
10. Berger S.L. The complex language of chromatin regulation during transcription. Nature. 2007;447(7143):407-412. https://doi.org/10.1038/nature 05915. https://pubmed.ncbi.nlm.nih.gov/17522673.
11. Beveridge N.J., Gardiner E., Carroll A.P., Tooney P.A., Cairns M.J. Schizophrenia is associated with an increase in cortical microRNA biogenesis. Mol. Psychiatry. 2010;15(12):1176-1189. https://doi.org/10.1038/mp.2009.84. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2990188.
12. Bicker S., Khudayberdiev S., Weiss K., Zocher K., Baumeister S., Schratt G. The DEAH-box helicase DHX36 mediates dendritic localization of the neuronal precursor-microRNA-134. Genes Dev. 2013;27(9):991-996. https://doi.org/10.1101/gad.211243.112. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3656329.
13. Bitetti A., Mallory A.C., Golini E., Carrieri C., Carreño Gutiérrez H., Perlas E., Pérez-Rico Y.A., Tocchini-Valentini G.P., Enright A.J., Norton W.H.J., Mandillo S., O’Carroll D., Shkumatava A. MicroRNA degradation by a conserved target RNA regulates animal behavior. Nat. Struct. Mol. Biol. 2018;25(3):244-251. https://doi.org/10.1038/s41594-018-0032-x. https://pubmed.ncbi.nlm.nih.gov/29483647.
14. Cao T., Zhen X.C. Dysregulation of miRNA and its potential therapeutic application in schizophrenia. CNS Neurosci. Ther. 2018; 24(7):586-597. https://doi.org/10.1111/cns.12840.
15. Chen W., Qin C. General hallmarks of microRNAs in brain evolution and development. RNA Biol. 2015;12(7):701-708. https://doi.org/10.1080/15476286.2015.1048954. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4615839.
16. Cheng Y., Wang Z.M., Tan W., Wang X., Li Y., Bai B., Li Y., Zhang S.F., Yan H.L., Chen Z.L., Liu C.M., Mi T.W., Xia S., Zhou Z., Liu A., Tang G.B., Liu C., Dai Z.J., Wang Y.Y., Wang H., Wang X., Kang Y., Lin L., Chen Z., Xie N., Sun Q., Xie W., Peng J., Chen D., Teng Z.Q., Jin P. Partial loss of psychiatric risk gene miR137 in mice causes repetitive behavior and impairs sociability and learning via increased Pde10a. Nat. Neurosci. 2018;21(12):1689-1703. https://doi.org/10.1038/s41593-018-0261-7. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6261680.
17. Chmielarz P., Konovalova J., Najam S.S., Alter H., Piepponen T.P., Erfle H., Sonntag K.C., Schütz G., Vinnikov I.A., Domanskyi A. Dicer and microRNAs protect adult dopamine neurons. Cell Death Dis. 2017;8(5):e2813. https://doi.org/10.1038/cddis.2017.214. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5520729.
18. Danka Mohammed C.P., Park J.S., Nam H.G., Kim K. MicroRNAs in brain aging. Mech. Ageing Dev. 2017;168:3-9. https://doi.org/10.1016/j.mad.2017.01.007. https://pubmed.ncbi.nlm.nih.gov/28119001.
19. Dias B.G., Goodman J.V., Ahluwalia R., Easton A.E., Andero R., Ressler K.J. Amygdala-dependent fear memory consolidation via miR-34a and notch signaling. Neuron. 2014;83(4):906-918. https://doi.org/10.1016/j.neuron.2014.07.019. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4172484.
20. Dimmeler S., Nicotera P. MicroRNAs in age-related diseases. EMBO Mol. Med. 2013;5(2):180-190. https://doi.org/10.1002/emmm.201201986. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3569636.
21. Fiorenza A., Barco A. Role of Dicer and the miRNA system in neuronal plasticity and brain function. Neurobiol. Learn. Mem. 2016; 135:3-12. https://doi.org/10.1016/j.nlm.2016.05.001. https://pubmed.ncbi.nlm.nih.gov/27163737.
22. Fiorenza A., Lopez-Atalaya J.P., Rovira V., Scandaglia M., GeijoBarrientos E., Barco A. Blocking miRNA biogenesis in adult forebrain neurons enhances seizure susceptibility, fear memory, and food intake by increasing neuronal responsiveness. Cereb. Cortex. 2016;26:1619-1633. https://doi.org/10.1093/cercor/bhu332. https://pubmed.ncbi.nlm.nih.gov/25595182.
23. Fischer A. Epigenetic memory: the Lamarckian brain. EMBO J. 2014;33(9):945-967. https://doi.org/10.1002/embj.201387637. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4193930.
24. Gaine M.E., Chatterjee S., Abel T. Sleep deprivation and the epigenome. Front. Neural Circuits. 2018;12:14. https://doi.org/10.3389/fncir.2018.00014. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5835037.
25. Gantier M.P., McCoy C.E., Rusinova I., Saulep D., Wang D., Xu D., Irving A.T., Behlke M.A., Hertzog P.J., Mackay F., Williams B.R. Analysis of microRNA turnover in mammalian cells following Dicer1 ablation. Nucleic Acids Res. 2011;39(13):5692-5703. https://doi.org/10.1093/nar/gkr148. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3141258.
26. Gao J., Wang W.Y., Mao Y.W., Gräff J., Guan J.S., Pan L., Mak G., Kim D., Su S.C., Tsai L.H. Anovel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature. 2010;466(7310):1105- 1109. https://doi.org/10.1038/nature09271. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2928875.
27. Griggs E.M., Young E.J., Rumbaugh G., Miller C.A. MicroRNA-182 regulates amygdala-dependent memory formation. Version 2. J. Neurosci. 2013;33(4):1734-1740. https://doi.org/10.1523/JNEUROSCI.2873-12.2013. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3711533.
28. Grinkevich L.N. Epigenetics and long-term memory formation. Rossiyskiy Fiziologicheskiy Zhurnal im. I.M. Sechenova = I.M. Sechenov Physiological Journal. 2012;98(5):553-574. https://pubmed.ncbi.nlm.nih.gov/22838191 (in Russian)
29. Grinkevich L.N. Influence of PLL treatment on the long-term memory formation in Helix mollusk. Meditsynskiy Akademicheskiy Zhurnal = Medical Academic Journal. 2019;19(4):87-92. https://doi.org/10.17816/MAJ19080. https://journals.eco-vector.com/MAJ/article/view/19080. (in Russian)
30. Gu Q.H., Yu D., Hu Z., Liu X., Yang Y., Luo Y., Zhu J., Li Z. miR-26a and miR-384-5p are required for LTP maintenance and spine enlargement. Nat. Commun. 2015;6:6789. https://doi.org/10.1038/ncomms7789. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4403380.
31. Gu X., Xu Y., Xue W.Z., Wu Y., Ye Z., Xiao G., Wang H.L. Interplay of miR-137 and EZH2 contributes to the genome-wide redistribution of H3K27me3 underlying the Pb-induced memory impairment. Cell Death Dis. 2019;10(9):671. https://doi.org/10.1038/s41419-019-1912. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6739382.
32. Hansen K.F., Sakamoto K., Wayman G.A., Impey S., Obrietan K. Transgenic miR132 alters neuronal spine density and impairs novel object recognition memory. PLoS One. 2010;5(11):e15497. https://doi.org/10.1371/journal.pone.0015497. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2993964.
33. Havekes R., Abel T. The tired hippocampus: the molecular impact of sleep deprivation on hippocampal function. Curr. Opin. Neu¬ robiol. 2017;44:13-19. https://doi.org/10.1016/j.conb.2017.02.005. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5511071.
34. He L., Hannon G.J. MicroRNAs: small RNAs with a big role in gene regulation. Nat. Rev. Genet. 2004;5(7):522-531. https://doi.org/10.1038/nrg1379. https://pubmed.ncbi.nlm.nih.gov/15211354.
35. Hébert S.S., Papadopoulou A.S., Smith P., Galas M.C., Planel E., Silahtaroglu A.N., Sergeant N., Buée L., De Strooper B. Genetic ablation of Dicer in adult forebrain neurons results in abnormal tau hyperphosphorylation and neurodegeneration. Hum. Mol. Genet. 2010;19(20):3959-3969. https://doi.org/10.1093/hmg/ddq311. https://pubmed.ncbi.nlm.nih.gov/20660113.
36. Hirosawa M., Fujita Y., Parr C.J.C., Hayashi K., Kashida S., Hotta A., Woltjen K., Saito H. Cell-type-specific genome editing with a microRNA-responsive CRISPR-Cas9 switch. Nucleic Acids Res. 2017;45(13):e118. https://doi.org/10.1093/nar/gkx309. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5570128.
37. Hoffmann M.D., Aschenbrenner S., Grosse S., Rapti K., Domenger C., Fakhiri J., Mastel M., Börner K., Eils R., Grimm D., Niopek D. Cell-specific CRISPR-Cas9 activation by microRNA-dependent expression of anti-CRISPR protein. Nucleic Acids Res. 2019;47(13):e75. https://doi.org/10.1093/nar/gkz271. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6648350.
38. Hu T., Zhou F.J., Chang Y.F., Li Y.S., Liu G.C., Hong Y., Chen H.L., Xiyang Y.B., Bao T.H. miR21 is associated with the cognitive improvement following voluntary running wheel exercise in TBI mice. J. Mol. Neurosci. 2015;57(1):114-122. https://doi.org/10.1007/s12031-015-0584-8. https://pubmed.ncbi.nlm.nih.gov/26018937.
39. Hu Z., Li Z. miRNAs in synapse development and synaptic plasticity. Curr. Opin. Neurobiol. 2017;45:24-31. https://doi.org/10.1016/j.conb.2017.02.014. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5554733.
40. Hu Z., Yu D., Gu Q.H., Yang Y., Tu K., Zhu J., Li Z. miR-191 and miR-135 are required for long-lasting spine remodelling associated with synaptic long-term depression. Nat. Commun. 2014;5: 3263. https://doi.org/10.1038/ncomms4263. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3951436.
41. Hu Z., Zhao J., Hu T., Luo Y., Zhu J., Li Z. miR-501-3p mediates the activity-dependent regulation of the expression of AMPA receptor subunit GluA1. J. Cell Biol. 2015;208(7):949-959. https://doi.org/10.1083/jcb.201404092. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4384731.
42. Inukai S., de Lencastre A., Turner M., Slack F. Novel microRNAs differentially expressed during aging in the mouse brain. PLoS One. 2012;7:e40028. https://doi.org/10.1371/journal.pone.0040028. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3402511.
43. Jawaid A., Woldemichael B.T., Kremer E.A., Laferriere F., Gaur N., Afroz T., Polymenidou M., Mansuy I.M. Memory decline and its reversal in aging and neurodegeneration involve miR-183/96/182 biogenesis. Mol. Neurobiol. 2019;56(5):3451-3462. https://doi.org/10.1007/s12035-018-1314-3. https://pubmed.ncbi.nlm.nih.gov/30128653.
44. Jessop P., Toledo-Rodriguez M. Hippocampal TET1 and TET2 expression and DNA hydroxymethylation are affected by physical exercise in aged mice. Front. Cell Dev. Biol. 2018;6:45. https://doi.org/10.3389/fcell.2018.00045. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5922180.
45. John B., Enright A.J., Aravin A., Tuschl T., Sander C., Marks D.S. Human microRNA targets. PLoS Biol. 2004;2(11):e363. https://doi.org/10.1371/journal.pbio.0020363. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC521178.
46. Jovasevic V., Corcoran K.A., Leaderbrand K., Yamawaki N., Guedea A.L., Chen H.J., Shepherd G.M., Radulovic J. GABAergic mechanisms regulated by miR-33 encode state-dependent fear. Nat. Neurosci. 2015;18(9):1265-1271. https://doi.org/10.1038/nn.4084. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4880671.
47. Kandel E. Small neuron systems. In: The Brain. Scientific American, 1979.
48. Kandel E. The molecular biology of memory: cAMP, PKA, CRE, CREB-1, CREB-2, and CPEB. Mol. Brain. 2012;5(14):1-12. https://doi.org/10.1186/1756-6606-5-1426. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3514210.
49. Karabulut S., Korkmaz Bayramov K., Bayramov R., Ozdemir F., Topaloglu T., Ergen E., Yazgan K., Taskiran A.S., Golgeli A. Effects of post-learning REM sleep deprivation on hippocampal plasticity-related genes and microRNA in mice. Behav. Brain Res. 2019;361:7-13. https://doi.org/10.1016/j.bbr.2018.12.045. https://pubmed.ncbi.nlm.nih.gov/30594545.
50. Kim S., Kaang B.K. Epigenetic regulation and chromatin remodeling in learning and memory. Exp. Mol. Med. 2017;49(1):e281. https://doi.org/10.1038/emm.2016.140. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5291841.
51. Konopka W., Kiryk A., Novak M., Herwerth M., Parkitna J.R., Wawrzyniak M., Kowarsch A., Michaluk P., Dzwonek J., Arnsperger T., Wilczynski G., Merkenschlager M., Theis F.J., Köhr G., Kaczmarek L., Schütz G. MicroRNA loss enhances learning and memory in mice. J. Neurosci. 2010;30(44):14835-14842. https://doi.org/10.1523/JNEUROSCI.3030-10.2010. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6633640.
52. Korneev S.A., Vavoulis D.V., Naskar S., Dyakonova V.E., Kemenes I., Kemenes G. A CREB2-targeting microRNA is required for long-term memory after single-trial learning. Sci. Rep. 2018; 8(1):3950. https://doi.org/10.1038/s41598-018-22278-w. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5834643.
53. Lee R.C., Feinbaum R.L., Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843-854. https://doi.org/10.1016/0092-8674(93)90529-y. https://pubmed.ncbi.nlm.nih.gov/8252621.
54. Lee S.T., Chu K., Jung K.H., Kim J.H., Huh J.Y., Yoon H., Park D.K., Lim J.Y., Kim J.M., Jeon D., Ryu H., Lee S.K., Kim M., Roh J.K. miR-206 regulates brain-derived neurotrophic factor in Alzheimer disease model. Ann. Neurol. 2012;72:269-277. https://doi.org/10.1002/ana.23588. https://pubmed.ncbi.nlm.nih.gov/22926857.
55. Lesseur C., Paquette A.G., Marsit C.J. Epigenetic regulation of infant neurobehavioral outcomes. Med. Epigenet. 2014;2(2):71-79. https://doi.org/10.1159/000361026. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4116357.
56. Leung A.K.L. The whereabouts of microRNA actions: cytoplasm and beyond. Trends Cell Biol. 2015;25(10):601-610. https://doi.org/10.1016/j.tcb.2015.07.005. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4610250.
57. Lewis B.P., Shih I.-H., Jones-Rhoades M.W., Bartel D.P., Burge C.B. Prediction of mammalian microRNA targets. Cell. 2003;115(7): 787-798. https://doi.org/10.1016/s0092-8674(03)01018-3. https://pubmed.ncbi.nlm.nih.gov/14697198.
58. Lin Q., Ponnusamy R., Widagdo J., Choi J.A., Ge W., Probst C., Buckley T., Lou M., Bredy T.W., Fanselow M.S., Ye K., Sun Y.E. MicroRNA-mediated disruption of dendritogenesis during a critical period of development influences cognitive capacity later in life. Proc. Natl. Acad. Sci. USA. 2017;114(34):9188-9193. https://doi.org/10.1073/pnas.1706069114. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5576812.
59. Liu E.Y., Cali C.P., Lee E.B. RNA metabolism in neurodegenerative disease. Dis. Model. Mech. 2017;10(5):509-518. https://doi.org/10.1242/dmm.028613. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5451173.
60. Lugli G., Larson J., Martone M.E., Jones Y., Smalheiser N.R. Dicer and eIF2c are enriched at postsynaptic densities in adult mouse brain and are modified by neuronal activity in a calpain-dependent manner. J. Neurochem. 2005;94(4):896-905. https://doi.org/10.1111/j.1471-4159.2005.03224.x. https://pubmed.ncbi.nlm.nih.gov/16092937.
61. Malmevik J., Petri R., Knauff P., Brattas P.L., Akerblom M., Jakobsson J. Distinct cognitive effects and underlying transcriptome changes upon inhibition of individual miRNAs in hippocampal neurons. Sci. Rep. 2016;6:19879. https://doi.org/10.1038/srep19879. https:// www.ncbi.nlm.nih.gov/pmc/articles/PMC4728481.
62. Mathew R.S., Tatarakis A., Rudenko A., Johnson-Venkatesh E.M., Yang Y.J., Murphy E.A., Todd T.P., Schepers S.T., Siuti N., Martorell A.J., Falls W.A., Hammack S.E., Walsh C.A., Tsai L.H., Umemori H., Bouton M.E., Moazed D.A. microRNA negative feedback loop downregulates vesicle transport and inhibits fear memory. eLife. 2016;5:e22467. https://doi.org/10.7554/eLife.22467. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5293492.
63. McNeill E., Van Vactor D. MicroRNAs shape the neuronal landscape. Neuron. 2012;75(3):363-379. https://doi.org/10.1016/j.neuron.2012.07.005. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3441179.
64. Murphy C.P., Singewald N. Potential of microRNAs as novel targets in the alleviation of pathological fear. Genes Brain Behav. 2018; 17(3):e12427. https://doi.org/10.1111/gbb.12427. https://onlinelibrary.wiley.com/doi/full/10.1111/gbb.12427.
65. Nilsson E.K., Boström A.E., Mwinyi J., Schiöth H.B. Epigenomics of total acute sleep deprivation in relation to genome-wide DNA methylation profiles and RNA expression. OMICS. 2016;20(6): 334-342. https://doi.org/10.1089/omi.2016.0041. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4926204.
66. Nudelman A.S., DiRocco D.P., Lambert T.J., Garelick M.G., Le J., Nathanson N.M., Storm D.R. Neuronal activity rapidly induces transcription of the CREB-regulated microRNA-132, in vivo. Hippocampus. 2010;20(4):492-498. https://doi.org/10.1002/hipo.20646. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2847008.
67. Paul S., Reyes P.R., Garza B.S., Sharma A. MicroRNAs and child neuropsychiatric disorders: a brief review. Neurochem. Res. 2020;45(2):232-240. https://doi.org/10.1007/s11064-019-02917-y. https://pubmed.ncbi.nlm.nih.gov/31773374.
68. Rajasethupathy P., Fiumara F., Sheridan R., Betel D., Puthanveettil S.V., Russo J.J., Sander C., Tuschl T., Kandel E. Characterization of small RNAs in Aplysia reveals a role for miR-124 in constraining synaptic plasticity through CREB. Neuron. 2009;63(6): 803-817. https://doi.org/10.1016/j.neuron.2009.05.029. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2875683.
69. Ramakrishna S., Muddashetty R.S. Emerging role of microRNAs in dementia. J. Mol. Biol. 2019;431(9):1743-1762. https://doi.org/10.1016/j.jmb.2019.01.046. https://pubmed.ncbi.nlm.nih.gov/30738891.
70. Reinhart B.J., Slack F.J., Basson M., Pasquinelli A.E., Bettinger J.C., Rougvie A.E., Horvitz H.R., Ruvkun G. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000;403(6772):901-906. https://doi.org/10.1038/35002607. https://pubmed.ncbi.nlm.nih.gov/10706289.
71. Saus E., Soria V., Escaramis G., Vivarelli F., Crespo J.M., Kagerbauer B., Menchón J.M., Urretavizcaya M., Gratacòs M., Estivill X. Genetic variants and abnormal processing of pre-miR182, a circadian clock modulator, in major depression patients with late insomnia. Hum. Mol. Genet. 2010;19(20):4017-4025. https://doi.org/10.1093/hmg/ddq316. https://pubmed.ncbi.nlm.nih.gov/20656788.
72. Selbach M., Schwanhäusser B., Thierfelder N., Fang Z., Khanin R., Rajewsky N. Widespread changes in protein synthesis induced by microRNAs. Nature. 2008;455(7209):58-63. https://doi.org/10.1038/nature07228. https://pubmed.ncbi.nlm.nih.gov/18668040.
73. Shen J., Li Y., Qu C., Xu L., Sun H., Zhang J. The enriched environment ameliorates chronic unpredictable mild stress-induced depressive-like behaviors and cognitive impairment by activating the SIRT1/miR-134 signaling pathway in hippocampus. J. Affect Disord. 2019;248:81-90. https://doi.org/10.1016/j.jad.2019.01.031. https://pubmed.ncbi.nlm.nih.gov/30716615.
74. Siegert S., Seo J., Kwon E.J., RudenkoA., Cho S., Wang W., Flood Z., Martorell A.J., Ericsson M., Mungenast A.E., Tsai L.H. The schizophrenia risk gene product miR-137 alters presynaptic plasticity. Nat. Neurosci. 2015;18(7):1008-1016. https://doi.org/10.1038/nn.4023. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4506960.
75. Sim S.E., Lim C.S., Kim J.I., Seo D., Chun H., Yu N.K., Lee J., Kang S.J., Ko H.G., Choi J.H., Kim T., Jang E.H., Han J., Bak M.S., Park J.E., Jang D.J., Baek D., Lee Y.S., Kaang B.K. The brain-enriched microRNA miR-9-3p regulates synaptic plasticity and memory. J. Neurosci. 2016;36(33):8641-8652. https://doi.org/10.1523/JNEUROSCI.0630-16.2016. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6601897.
76. Smalheiser N.R. The RNA-centred view of the synapse: non-coding RNAs and synaptic plasticity. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014;369(1652):20130504. https://doi.org/10.1098/rstb.2013.0504. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4142025.
77. Smith A.C.W., Kenny P.J. MicroRNAs regulate synaptic plasticity underlying drug addiction. Genes Brain Behav. 2018;17(3): e12424. https://doi.org/10.1111/gbb.12424. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5837931.
78. Sweatt J.D. Neural plasticity and behavior - sixty years of conceptual advances. J. Neurochem. 2016;139(Suppl.2):179-199. https://doi.org/10.1111/jnc.13580. https://pubmed.ncbi.nlm.nih.gov/26875778.
79. Vetere G., Barbato C., Pezzola S., Frisone P., Aceti M., Ciotti M., Cogoni C., Ammassari-Teule M., Ruberti F. Selective inhibition of miR-92 in hippocampal neurons alters contextual fear memory. Hippocampus. 2014;24(12):1458-1465. https://doi.org/10.1002/hipo.22326. https://pubmed.ncbi.nlm.nih.gov/24990518.
80. Wang C.N., Wang Y.J., Wang H., Song L., Chen Y., Wang J.L., Ye Y., Jiang B. The anti-dementia effects of Donepezil involve miR-206- 3p in the hippocampus and cortex. Biol. Pharm. Bull. 2017;40(4): 465-472. https://doi.org/10.1248/bpb.b16-00898. https://pubmed.ncbi.nlm.nih.gov/28123152.
81. Wang X., Liu D., Huang H.Z., Wang Z.H., Hou T.Y., Yang X., Pang P., Wei N., Zhou Y.F., Dupras M.J., Calon F., Wang Y.T., Man H.Y., Chen J.G., Wang J.Z., Hébert S.S., Lu Y., Zhu L.Q. A novel microRNA-124/PTPN1 signal pathway mediates synaptic and memory deficits in Alzheimer’s disease. Biol. Psychiatry. 2018;83(5):395-405. https://doi.org/10.1016/j.biopsych.2017.07.023. https://pubmed.ncbi.nlm.nih.gov/28965984.
82. Wingo T.S., Yang J., Fan W., Min Canon S., Gerasimov E.S., Lori A., Logsdon B., Yao B., Seyfried N.T., Lah J.J., LeveyA.I., Boyle P.A., Schneider J.A., De Jager P.L., Bennett D.A., Wingo A.P. Brain microRNAs associated with late-life depressive symptoms are also associated with cognitive trajectory and dementia. NPJ Genom. Med. 2020;5:6. https://doi.org/10.1038/s41525-019-0113-8. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7004995.
83. Woldemichael B.T., Jawaid A., Kremer E.A., Gaur N., Krol J., Marchais A., Mansuy I.M. The microRNA cluster miR-183/96/182 contributes to long-term memory in a protein phosphatase 1-dependent manner. Nat. Commun. 2016;7:12594. https://doi.org/10.1038/ncomms12594. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5007330.
84. Wu Y.Y., Kuo H.C. Functional roles and networks of non-coding RNAs in the pathogenesis of neurodegenerative diseases. J. Biomed. Sci. 2020;27(1):49. https://doi.org/10.1186/s12929-020-00636-z. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7140545.
85. Yan H.L., Sun X.W., Wang Z.M., Liu P.P., Mi T.W., Liu C., Wang Y.Y., He X.C., Du H.Z., Liu C.M., Teng Z.Q. MiR-137 deficiency causes anxiety-like behaviors in mice. Front. Mol. Neuro¬ sci. 2019;12:260. https://doi.org/10.3389/fnmol.2019.00260. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6831983.
86. Yang Y., Shu X., Liu D., Shang Y., Wu Y., Pei L., Xu X., Tian Q., Zhang J., Qian K., Wang Y.X., Petralia R.S., Tu W., Zhu L.Q., Wang J.Z., Lu Y. EPAC null mutation impairs learning and social interactions via aberrant regulation of miR-124 and Zif 268 translation. Neuron. 2012;73(4):774-788. https://doi.org/10.1016/j.neuron.2012.02.003. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3307595.
87. You Y.H., Qin Z.Q., Zhang H.L., Yuan Z.H., Yu X. MicroRNA-153 promotes brain-derived neurotrophic factor and hippocampal neuron proliferation to alleviate autism symptoms through inhibition of JAK-STAT pathway by LEPR. Biosci. Rep. 2019;39(6): BSR20181904. https://doi.org/10.1042/BSR20181904. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6591574.
88. Zovoilis A., Agbemenyah H.Y., Agis-Balboa R.C., Stilling R.M., Edbauer D., Rao P., Farinelli L., Delalle I., Schmitt A., Falkai P., Bahari-Javan S., Burkhardt S., Sananbenesi F., Fischer A. MicroRNA-34c is a novel target to treat dementias. EMBO J. 2011;30: 4299-4308. https://doi.org/10.1038/emboj.2011.327. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3199394.