The role of microRNAs in learning and long-term memory
https://doi.org/10.18699/VJ20.687
Abstract
The mechanisms of long-term memory formation and ways to improve it (in the case of its impairment) remain an extremely difficult problem yet to be solved. Over the recent years, much attention has been paid to microRNAs in this regard. MicroRNAs are unique endogenous non-coding RNAs about 22 nucleotides in length; each can regulate translation of hundreds of messenger RNA targets, thereby controlling entire gene networks. MicroRNAs are widely represented in the central nervous system. A large number of studies are currently being conducted to investigate the role of microRNAs in the brain functioning. A number of microRNAs have been shown to be involved in the process of synaptic plasticity, as well as in the long-term memory formation. Disruption of microRNA biogenesis leads to significant cognitive dysfunctions. Moreover, impaired microRNA biogenesis is one of the causes of the pathogenesis of mental disorders, neurodegenerative illnesses and senile dementia, which are often accompanied by deterioration in the learning ability and by memory impairment. Optimistic predictions are made that microRNAs can be used as targets for therapeutic treatment and for diagnosing the above pathologies. The importance of applications related to microRNAs significantly raises interest in studying their functions in the brain. Thus, this review is focused on the role of microRNAs in cognitive processes. It describes microRNA biogenesis and the role of miRNAs in the regulation of gene expression, as well as the latest achievements in studying the functional role of microRNAs in learning and in long-term memory formation, depending on the activation or inhibition of their expression. The review presents summarized data on the effect of impaired microRNA biogenesis on long-term memory formation, including those associated with sleep deprivation. In addition, analysis is provided of the current literature related to the prospects of improving cognitive processes by influencing microRNA biogenesis via the use of CRISPR/Cas9 technologies and active mental and physical exercises.
Keywords
About the Author
L. N. GrinkevichRussian Federation
St. Petersburg
References
1. Ai J., Sun L.H., Che H., Zhang R., Zhang T.Z., Wu W.C., Su X.L., Chen X., Yang G., Li K., Wang N., Ban T., Bao Y.N., Guo F., Niu H.F., Zhu Y.L., Zhu X.Y., Zhao S.G., Yang B.F. MicroRNA195 protects against dementia induced by chronic brain hypoperfusion via its anti-amyloidogenic effect in rats. J. Neurosci. 2013;33(9):3989-4001. DOI 10.1523/JNEUROSCI.1997-12.2013. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6619292.
2. Aksoy-Aksel A., Zampa F., Schratt G. MicroRNAs and synaptic plasticity – a mutual relationship. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014;369(1652):20130515. DOI 10.1098/rstb.2013.0515. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4142036.
3. Aquino-Jarquin G. Emerging role of CRISPR/Cas9 technology for microRNAs editing in cancer research. Cancer Res. 2017;77(24): 6812-6817. DOI 10.1158/0008-5472.CAN-17-2142. https://cancerres.aacrjournals.org/content/77/24/6812.long.
4. Aten S., Hansen K.F., Snider K., Wheaton K., Kalidindi A., Garcia A., Alzate-Correa D., Hoyt K.R., Obrietan K. miR-132 couples the circadian clock to daily rhythms of neuronal plasticity and cognition. Learn. Mem. 2018;25(5):214-229. DOI 10.1101/lm.047191.117. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5903403.
5. Baby N., Alagappan N., Dheen S.T., Sajikumar S. MicroRNA-134-5p inhibition rescues long-term plasticity and synaptic tagging/capture in an Aβ(1-42)-induced model of Alzheimer’s disease. Aging Cell. 2020;19(1):e13046. DOI 10.1111/acel.13046. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6974725.
6. Baek S., Hwan C., Kim J. Ebf3-miR218 regulation is involved in the development of dopaminergic neurons. Brain Res. 2014;1587: 23-32. DOI 10.1016/j.brainres.2014.08.059. https://pubmed.ncbi.nlm.nih.gov/25192643.
7. Banks S.A., Pierce M.L., Soukup G.A. Sensational microRNAs: neurosensory roles of the microRNA-183 family. Mol. Neurobiol. 2020;57(1):358-371. DOI 10.1007/s12035-019-01717-3. https://link.springer.com/article/10.1007%2Fs12035-019-01717-3.
8. Bartel D.P. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215-233. DOI 10.1016/j.cell.2009.01.002. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3794896.
9. Benito E., Kerimoglu C., Ramachandran B., Pena-Centeno T., Jain G., Stilling R.M., Islam M.R., Capece V., Zhou Q., Edbauer D., Dean C., Fischer A. RNA-dependent intergenerational inheritance of enhanced synaptic plasticity after environmental enrichment. Cell Rep. 2018;23(2):546-554. DOI 10.1016/j.celrep.2018.03.059. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5912949.
10. Berger S.L. The complex language of chromatin regulation during transcription. Nature. 2007;447(7143):407-412. DOI 10.1038/nature 05915. https://pubmed.ncbi.nlm.nih.gov/17522673.
11. Beveridge N.J., Gardiner E., Carroll A.P., Tooney P.A., Cairns M.J. Schizophrenia is associated with an increase in cortical microRNA biogenesis. Mol. Psychiatry. 2010;15(12):1176-1189. DOI 10.1038/mp.2009.84. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2990188.
12. Bicker S., Khudayberdiev S., Weiss K., Zocher K., Baumeister S., Schratt G. The DEAH-box helicase DHX36 mediates dendritic localization of the neuronal precursor-microRNA-134. Genes Dev. 2013;27(9):991-996. DOI 10.1101/gad.211243.112. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3656329.
13. Bitetti A., Mallory A.C., Golini E., Carrieri C., Carreño Gutiérrez H., Perlas E., Pérez-Rico Y.A., Tocchini-Valentini G.P., Enright A.J., Norton W.H.J., Mandillo S., O’Carroll D., Shkumatava A. MicroRNA degradation by a conserved target RNA regulates animal behavior. Nat. Struct. Mol. Biol. 2018;25(3):244-251. DOI 10.1038/s41594-018-0032-x. https://pubmed.ncbi.nlm.nih.gov/29483647.
14. Cao T., Zhen X.C. Dysregulation of miRNA and its potential therapeutic application in schizophrenia. CNS Neurosci. Ther. 2018; 24(7):586-597. DOI 10.1111/cns.12840.
15. Chen W., Qin C. General hallmarks of microRNAs in brain evolution and development. RNA Biol. 2015;12(7):701-708. DOI 10.1080/15476286.2015.1048954. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4615839.
16. Cheng Y., Wang Z.M., Tan W., Wang X., Li Y., Bai B., Li Y., Zhang S.F., Yan H.L., Chen Z.L., Liu C.M., Mi T.W., Xia S., Zhou Z., Liu A., Tang G.B., Liu C., Dai Z.J., Wang Y.Y., Wang H., Wang X., Kang Y., Lin L., Chen Z., Xie N., Sun Q., Xie W., Peng J., Chen D., Teng Z.Q., Jin P. Partial loss of psychiatric risk gene miR137 in mice causes repetitive behavior and impairs sociability and learning via increased Pde10a. Nat. Neurosci. 2018;21(12):1689-1703. DOI 10.1038/s41593-018-0261-7. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6261680.
17. Chmielarz P., Konovalova J., Najam S.S., Alter H., Piepponen T.P., Erfle H., Sonntag K.C., Schütz G., Vinnikov I.A., Domanskyi A. Dicer and microRNAs protect adult dopamine neurons. Cell Death Dis. 2017;8(5):e2813. DOI 10.1038/cddis.2017.214. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5520729.
18. Danka Mohammed C.P., Park J.S., Nam H.G., Kim K. MicroRNAs in brain aging. Mech. Ageing Dev. 2017;168:3-9. DOI 10.1016/j.mad.2017.01.007. https://pubmed.ncbi.nlm.nih.gov/28119001.
19. Dias B.G., Goodman J.V., Ahluwalia R., Easton A.E., Andero R., Ressler K.J. Amygdala-dependent fear memory consolidation via miR-34a and notch signaling. Neuron. 2014;83(4):906-918. DOI 10.1016/j.neuron.2014.07.019. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4172484.
20. Dimmeler S., Nicotera P. MicroRNAs in age-related diseases. EMBO Mol. Med. 2013;5(2):180-190. DOI 10.1002/emmm.201201986. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3569636.
21. Fiorenza A., Barco A. Role of Dicer and the miRNA system in neuronal plasticity and brain function. Neurobiol. Learn. Mem. 2016; 135:3-12. DOI 10.1016/j.nlm.2016.05.001. https://pubmed.ncbi.nlm.nih.gov/27163737.
22. Fiorenza A., Lopez-Atalaya J.P., Rovira V., Scandaglia M., GeijoBarrientos E., Barco A. Blocking miRNA biogenesis in adult forebrain neurons enhances seizure susceptibility, fear memory, and food intake by increasing neuronal responsiveness. Cereb. Cortex. 2016;26:1619-1633. DOI 10.1093/cercor/bhu332. https://pubmed.ncbi.nlm.nih.gov/25595182.
23. Fischer A. Epigenetic memory: the Lamarckian brain. EMBO J. 2014;33(9):945-967. DOI 10.1002/embj.201387637. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4193930.
24. Gaine M.E., Chatterjee S., Abel T. Sleep deprivation and the epigenome. Front. Neural Circuits. 2018;12:14. DOI 10.3389/fncir.2018.00014. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5835037.
25. Gantier M.P., McCoy C.E., Rusinova I., Saulep D., Wang D., Xu D., Irving A.T., Behlke M.A., Hertzog P.J., Mackay F., Williams B.R. Analysis of microRNA turnover in mammalian cells following Dicer1 ablation. Nucleic Acids Res. 2011;39(13):5692-5703. DOI 10.1093/nar/gkr148. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3141258.
26. Gao J., Wang W.Y., Mao Y.W., Gräff J., Guan J.S., Pan L., Mak G., Kim D., Su S.C., Tsai L.H. Anovel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature. 2010;466(7310):1105- 1109. DOI 10.1038/nature09271. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2928875.
27. Griggs E.M., Young E.J., Rumbaugh G., Miller C.A. MicroRNA-182 regulates amygdala-dependent memory formation. Version 2. J. Neurosci. 2013;33(4):1734-1740. DOI 10.1523/JNEUROSCI.2873-12.2013. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3711533.
28. Grinkevich L.N. Epigenetics and long-term memory formation. Rossiyskiy Fiziologicheskiy Zhurnal im. I.M. Sechenova = I.M. Sechenov Physiological Journal. 2012;98(5):553-574. https://pubmed.ncbi.nlm.nih.gov/22838191/ (in Russian)
29. Grinkevich L.N. Influence of PLL treatment on the long-term memory formation in Helix mollusk. Meditsynskiy Akademicheskiy Zhurnal = Medical Academic Journal. 2019;19(4):87-92. DOI 10.17816/MAJ19080. https://journals.eco-vector.com/MAJ/article/view/19080. (in Russian)
30. Gu Q.H., Yu D., Hu Z., Liu X., Yang Y., Luo Y., Zhu J., Li Z. miR-26a and miR-384-5p are required for LTP maintenance and spine enlargement. Nat. Commun. 2015;6:6789. DOI 10.1038/ncomms7789. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4403380.
31. Gu X., Xu Y., Xue W.Z., Wu Y., Ye Z., Xiao G., Wang H.L. Interplay of miR-137 and EZH2 contributes to the genome-wide redistribution of H3K27me3 underlying the Pb-induced memory impairment. Cell Death Dis. 2019;10(9):671. DOI 10.1038/s41419-019-1912. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6739382.
32. Hansen K.F., Sakamoto K., Wayman G.A., Impey S., Obrietan K. Transgenic miR132 alters neuronal spine density and impairs novel object recognition memory. PLoS One. 2010;5(11):e15497. DOI 10.1371/journal.pone.0015497. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2993964.
33. Havekes R., Abel T. The tired hippocampus: the molecular impact of sleep deprivation on hippocampal function. Curr. Opin. Neu¬ robiol. 2017;44:13-19. DOI 10.1016/j.conb.2017.02.005. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5511071.
34. He L., Hannon G.J. MicroRNAs: small RNAs with a big role in gene regulation. Nat. Rev. Genet. 2004;5(7):522-531. DOI 10.1038/nrg1379. https://pubmed.ncbi.nlm.nih.gov/15211354.
35. Hébert S.S., Papadopoulou A.S., Smith P., Galas M.C., Planel E., Silahtaroglu A.N., Sergeant N., Buée L., De Strooper B. Genetic ablation of Dicer in adult forebrain neurons results in abnormal tau hyperphosphorylation and neurodegeneration. Hum. Mol. Genet. 2010;19(20):3959-3969. DOI 10.1093/hmg/ddq311. https://pubmed.ncbi.nlm.nih.gov/20660113.
36. Hirosawa M., Fujita Y., Parr C.J.C., Hayashi K., Kashida S., Hotta A., Woltjen K., Saito H. Cell-type-specific genome editing with a microRNA-responsive CRISPR-Cas9 switch. Nucleic Acids Res. 2017;45(13):e118. DOI 10.1093/nar/gkx309. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5570128.
37. Hoffmann M.D., Aschenbrenner S., Grosse S., Rapti K., Domenger C., Fakhiri J., Mastel M., Börner K., Eils R., Grimm D., Niopek D. Cell-specific CRISPR-Cas9 activation by microRNA-dependent expression of anti-CRISPR protein. Nucleic Acids Res. 2019;47(13):e75. DOI 10.1093/nar/gkz271. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6648350.
38. Hu T., Zhou F.J., Chang Y.F., Li Y.S., Liu G.C., Hong Y., Chen H.L., Xiyang Y.B., Bao T.H. miR21 is associated with the cognitive improvement following voluntary running wheel exercise in TBI mice. J. Mol. Neurosci. 2015;57(1):114-122. DOI 10.1007/s12031-015-0584-8. https://pubmed.ncbi.nlm.nih.gov/26018937.
39. Hu Z., Li Z. miRNAs in synapse development and synaptic plasticity. Curr. Opin. Neurobiol. 2017;45:24-31. DOI 10.1016/j.conb.2017.02.014. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5554733.
40. Hu Z., Yu D., Gu Q.H., Yang Y., Tu K., Zhu J., Li Z. miR-191 and miR-135 are required for long-lasting spine remodelling associated with synaptic long-term depression. Nat. Commun. 2014;5: 3263. DOI 10.1038/ncomms4263. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3951436.
41. Hu Z., Zhao J., Hu T., Luo Y., Zhu J., Li Z. miR-501-3p mediates the activity-dependent regulation of the expression of AMPA receptor subunit GluA1. J. Cell Biol. 2015;208(7):949-959. DOI 10.1083/jcb.201404092. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4384731.
42. Inukai S., de Lencastre A., Turner M., Slack F. Novel microRNAs differentially expressed during aging in the mouse brain. PLoS One. 2012;7:e40028. DOI 10.1371/journal.pone.0040028. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3402511.
43. Jawaid A., Woldemichael B.T., Kremer E.A., Laferriere F., Gaur N., Afroz T., Polymenidou M., Mansuy I.M. Memory decline and its reversal in aging and neurodegeneration involve miR-183/96/182 biogenesis. Mol. Neurobiol. 2019;56(5):3451-3462. DOI 10.1007/s12035-018-1314-3. https://pubmed.ncbi.nlm.nih.gov/30128653.
44. Jessop P., Toledo-Rodriguez M. Hippocampal TET1 and TET2 expression and DNA hydroxymethylation are affected by physical exercise in aged mice. Front. Cell Dev. Biol. 2018;6:45. DOI 10.3389/fcell.2018.00045. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5922180.
45. John B., Enright A.J., Aravin A., Tuschl T., Sander C., Marks D.S. Human microRNA targets. PLoS Biol. 2004;2(11):e363. DOI 10.1371/journal.pbio.0020363. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC521178.
46. Jovasevic V., Corcoran K.A., Leaderbrand K., Yamawaki N., Guedea A.L., Chen H.J., Shepherd G.M., Radulovic J. GABAergic mechanisms regulated by miR-33 encode state-dependent fear. Nat. Neurosci. 2015;18(9):1265-1271. DOI 10.1038/nn.4084. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4880671.
47. Kandel E. Small neuron systems. In: The Brain. Scientific American, 1979.
48. Kandel E. The molecular biology of memory: cAMP, PKA, CRE, CREB-1, CREB-2, and CPEB. Mol. Brain. 2012;5(14):1-12. DOI 10.1186/1756-6606-5-1426. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3514210.
49. Karabulut S., Korkmaz Bayramov K., Bayramov R., Ozdemir F., Topaloglu T., Ergen E., Yazgan K., Taskiran A.S., Golgeli A. Effects of post-learning REM sleep deprivation on hippocampal plasticity-related genes and microRNA in mice. Behav. Brain Res. 2019;361:7-13. DOI 10.1016/j.bbr.2018.12.045. https://pubmed.ncbi.nlm.nih.gov/30594545.
50. Kim S., Kaang B.K. Epigenetic regulation and chromatin remodeling in learning and memory. Exp. Mol. Med. 2017;49(1):e281. DOI 10.1038/emm.2016.140. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5291841.
51. Konopka W., Kiryk A., Novak M., Herwerth M., Parkitna J.R., Wawrzyniak M., Kowarsch A., Michaluk P., Dzwonek J., Arnsperger T., Wilczynski G., Merkenschlager M., Theis F.J., Köhr G., Kaczmarek L., Schütz G. MicroRNA loss enhances learning and memory in mice. J. Neurosci. 2010;30(44):14835-14842. DOI 10.1523/JNEUROSCI.3030-10.2010. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6633640.
52. Korneev S.A., Vavoulis D.V., Naskar S., Dyakonova V.E., Kemenes I., Kemenes G. A CREB2-targeting microRNA is required for long-term memory after single-trial learning. Sci. Rep. 2018; 8(1):3950. DOI 10.1038/s41598-018-22278-w. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5834643.
53. Lee R.C., Feinbaum R.L., Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843-854. DOI 10.1016/0092-8674(93)90529-y. https://pubmed.ncbi.nlm.nih.gov/8252621.
54. Lee S.T., Chu K., Jung K.H., Kim J.H., Huh J.Y., Yoon H., Park D.K., Lim J.Y., Kim J.M., Jeon D., Ryu H., Lee S.K., Kim M., Roh J.K. miR-206 regulates brain-derived neurotrophic factor in Alzheimer disease model. Ann. Neurol. 2012;72:269-277. DOI 10.1002/ana.23588. https://pubmed.ncbi.nlm.nih.gov/22926857.
55. Lesseur C., Paquette A.G., Marsit C.J. Epigenetic regulation of infant neurobehavioral outcomes. Med. Epigenet. 2014;2(2):71-79. DOI 10.1159/000361026. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4116357.
56. Leung A.K.L. The whereabouts of microRNA actions: cytoplasm and beyond. Trends Cell Biol. 2015;25(10):601-610. DOI 10.1016/j.tcb.2015.07.005. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4610250.
57. Lewis B.P., Shih I.-H., Jones-Rhoades M.W., Bartel D.P., Burge C.B. Prediction of mammalian microRNA targets. Cell. 2003;115(7): 787-798. DOI 10.1016/s0092-8674(03)01018-3. https://pubmed.ncbi.nlm.nih.gov/14697198.
58. Lin Q., Ponnusamy R., Widagdo J., Choi J.A., Ge W., Probst C., Buckley T., Lou M., Bredy T.W., Fanselow M.S., Ye K., Sun Y.E. MicroRNA-mediated disruption of dendritogenesis during a critical period of development influences cognitive capacity later in life. Proc. Natl. Acad. Sci. USA. 2017;114(34):9188-9193. DOI 10.1073/pnas.1706069114. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5576812.
59. Liu E.Y., Cali C.P., Lee E.B. RNA metabolism in neurodegenerative disease. Dis. Model. Mech. 2017;10(5):509-518. DOI 10.1242/dmm.028613. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5451173.
60. Lugli G., Larson J., Martone M.E., Jones Y., Smalheiser N.R. Dicer and eIF2c are enriched at postsynaptic densities in adult mouse brain and are modified by neuronal activity in a calpain-dependent manner. J. Neurochem. 2005;94(4):896-905. DOI 10.1111/j.1471-4159.2005.03224.x. https://pubmed.ncbi.nlm.nih.gov/16092937.
61. Malmevik J., Petri R., Knauff P., Brattas P.L., Akerblom M., Jakobsson J. Distinct cognitive effects and underlying transcriptome changes upon inhibition of individual miRNAs in hippocampal neurons. Sci. Rep. 2016;6:19879. DOI 10.1038/srep19879. https:// www.ncbi.nlm.nih.gov/pmc/articles/PMC4728481.
62. Mathew R.S., Tatarakis A., Rudenko A., Johnson-Venkatesh E.M., Yang Y.J., Murphy E.A., Todd T.P., Schepers S.T., Siuti N., Martorell A.J., Falls W.A., Hammack S.E., Walsh C.A., Tsai L.H., Umemori H., Bouton M.E., Moazed D.A. microRNA negative feedback loop downregulates vesicle transport and inhibits fear memory. eLife. 2016;5:e22467. DOI 10.7554/eLife.22467. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5293492.
63. McNeill E., Van Vactor D. MicroRNAs shape the neuronal landscape. Neuron. 2012;75(3):363-379. DOI 10.1016/j.neuron.2012.07.005. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3441179.
64. Murphy C.P., Singewald N. Potential of microRNAs as novel targets in the alleviation of pathological fear. Genes Brain Behav. 2018; 17(3):e12427. DOI 10.1111/gbb.12427. https://onlinelibrary.wiley.com/doi/full/10.1111/gbb.12427.
65. Nilsson E.K., Boström A.E., Mwinyi J., Schiöth H.B. Epigenomics of total acute sleep deprivation in relation to genome-wide DNA methylation profiles and RNA expression. OMICS. 2016;20(6): 334-342. DOI 10.1089/omi.2016.0041. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4926204.
66. Nudelman A.S., DiRocco D.P., Lambert T.J., Garelick M.G., Le J., Nathanson N.M., Storm D.R. Neuronal activity rapidly induces transcription of the CREB-regulated microRNA-132, in vivo. Hippocampus. 2010;20(4):492-498. DOI 10.1002/hipo.20646. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2847008.
67. Paul S., Reyes P.R., Garza B.S., Sharma A. MicroRNAs and child neuropsychiatric disorders: a brief review. Neurochem. Res. 2020;45(2):232-240. DOI 10.1007/s11064-019-02917-y. https://pubmed.ncbi.nlm.nih.gov/31773374.
68. Rajasethupathy P., Fiumara F., Sheridan R., Betel D., Puthanveettil S.V., Russo J.J., Sander C., Tuschl T., Kandel E. Characterization of small RNAs in Aplysia reveals a role for miR-124 in constraining synaptic plasticity through CREB. Neuron. 2009;63(6): 803-817. DOI 10.1016/j.neuron.2009.05.029. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2875683.
69. Ramakrishna S., Muddashetty R.S. Emerging role of microRNAs in dementia. J. Mol. Biol. 2019;431(9):1743-1762. DOI 10.1016/j.jmb.2019.01.046. https://pubmed.ncbi.nlm.nih.gov/30738891.
70. Reinhart B.J., Slack F.J., Basson M., Pasquinelli A.E., Bettinger J.C., Rougvie A.E., Horvitz H.R., Ruvkun G. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000;403(6772):901-906. DOI 10.1038/35002607. https://pubmed.ncbi.nlm.nih.gov/10706289.
71. Saus E., Soria V., Escaramis G., Vivarelli F., Crespo J.M., Kagerbauer B., Menchón J.M., Urretavizcaya M., Gratacòs M., Estivill X. Genetic variants and abnormal processing of pre-miR182, a circadian clock modulator, in major depression patients with late insomnia. Hum. Mol. Genet. 2010;19(20):4017-4025. DOI 10.1093/hmg/ddq316. https://pubmed.ncbi.nlm.nih.gov/20656788.
72. Selbach M., Schwanhäusser B., Thierfelder N., Fang Z., Khanin R., Rajewsky N. Widespread changes in protein synthesis induced by microRNAs. Nature. 2008;455(7209):58-63. DOI 10.1038/nature07228. https://pubmed.ncbi.nlm.nih.gov/18668040.
73. Shen J., Li Y., Qu C., Xu L., Sun H., Zhang J. The enriched environment ameliorates chronic unpredictable mild stress-induced depressive-like behaviors and cognitive impairment by activating the SIRT1/miR-134 signaling pathway in hippocampus. J. Affect Disord. 2019;248:81-90. DOI 10.1016/j.jad.2019.01.031. https://pubmed.ncbi.nlm.nih.gov/30716615.
74. Siegert S., Seo J., Kwon E.J., RudenkoA., Cho S., Wang W., Flood Z., Martorell A.J., Ericsson M., Mungenast A.E., Tsai L.H. The schizophrenia risk gene product miR-137 alters presynaptic plasticity. Nat. Neurosci. 2015;18(7):1008-1016. DOI 10.1038/nn.4023. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4506960.
75. Sim S.E., Lim C.S., Kim J.I., Seo D., Chun H., Yu N.K., Lee J., Kang S.J., Ko H.G., Choi J.H., Kim T., Jang E.H., Han J., Bak M.S., Park J.E., Jang D.J., Baek D., Lee Y.S., Kaang B.K. The brain-enriched microRNA miR-9-3p regulates synaptic plasticity and memory. J. Neurosci. 2016;36(33):8641-8652. DOI 10.1523/JNEUROSCI.0630-16.2016. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6601897.
76. Smalheiser N.R. The RNA-centred view of the synapse: non-coding RNAs and synaptic plasticity. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014;369(1652):20130504. DOI 10.1098/rstb.2013.0504. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4142025.
77. Smith A.C.W., Kenny P.J. MicroRNAs regulate synaptic plasticity underlying drug addiction. Genes Brain Behav. 2018;17(3): e12424. DOI 10.1111/gbb.12424. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5837931.
78. Sweatt J.D. Neural plasticity and behavior – sixty years of conceptual advances. J. Neurochem. 2016;139(Suppl.2):179-199. DOI 10.1111/jnc.13580. https://pubmed.ncbi.nlm.nih.gov/26875778.
79. Vetere G., Barbato C., Pezzola S., Frisone P., Aceti M., Ciotti M., Cogoni C., Ammassari-Teule M., Ruberti F. Selective inhibition of miR-92 in hippocampal neurons alters contextual fear memory. Hippocampus. 2014;24(12):1458-1465. DOI 10.1002/hipo.22326. https://pubmed.ncbi.nlm.nih.gov/24990518.
80. Wang C.N., Wang Y.J., Wang H., Song L., Chen Y., Wang J.L., Ye Y., Jiang B. The anti-dementia effects of Donepezil involve miR-206- 3p in the hippocampus and cortex. Biol. Pharm. Bull. 2017;40(4): 465-472. DOI 10.1248/bpb.b16-00898. https://pubmed.ncbi.nlm.nih.gov/28123152.
81. Wang X., Liu D., Huang H.Z., Wang Z.H., Hou T.Y., Yang X., Pang P., Wei N., Zhou Y.F., Dupras M.J., Calon F., Wang Y.T., Man H.Y., Chen J.G., Wang J.Z., Hébert S.S., Lu Y., Zhu L.Q. A novel microRNA-124/PTPN1 signal pathway mediates synaptic and memory deficits in Alzheimer’s disease. Biol. Psychiatry. 2018;83(5):395-405. DOI 10.1016/j.biopsych.2017.07.023. https://pubmed.ncbi.nlm.nih.gov/28965984.
82. Wingo T.S., Yang J., Fan W., Min Canon S., Gerasimov E.S., Lori A., Logsdon B., Yao B., Seyfried N.T., Lah J.J., LeveyA.I., Boyle P.A., Schneider J.A., De Jager P.L., Bennett D.A., Wingo A.P. Brain microRNAs associated with late-life depressive symptoms are also associated with cognitive trajectory and dementia. NPJ Genom. Med. 2020;5:6. DOI 10.1038/s41525-019-0113-8. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7004995.
83. Woldemichael B.T., Jawaid A., Kremer E.A., Gaur N., Krol J., Marchais A., Mansuy I.M. The microRNA cluster miR-183/96/182 contributes to long-term memory in a protein phosphatase 1-dependent manner. Nat. Commun. 2016;7:12594. DOI 10.1038/ncomms12594. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5007330.
84. Wu Y.Y., Kuo H.C. Functional roles and networks of non-coding RNAs in the pathogenesis of neurodegenerative diseases. J. Biomed. Sci. 2020;27(1):49. DOI 10.1186/s12929-020-00636-z. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7140545.
85. Yan H.L., Sun X.W., Wang Z.M., Liu P.P., Mi T.W., Liu C., Wang Y.Y., He X.C., Du H.Z., Liu C.M., Teng Z.Q. MiR-137 deficiency causes anxiety-like behaviors in mice. Front. Mol. Neuro¬ sci. 2019;12:260. DOI 10.3389/fnmol.2019.00260. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6831983.
86. Yang Y., Shu X., Liu D., Shang Y., Wu Y., Pei L., Xu X., Tian Q., Zhang J., Qian K., Wang Y.X., Petralia R.S., Tu W., Zhu L.Q., Wang J.Z., Lu Y. EPAC null mutation impairs learning and social interactions via aberrant regulation of miR-124 and Zif 268 translation. Neuron. 2012;73(4):774-788. DOI 10.1016/j.neuron.2012.02.003. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3307595.
87. You Y.H., Qin Z.Q., Zhang H.L., Yuan Z.H., Yu X. MicroRNA-153 promotes brain-derived neurotrophic factor and hippocampal neuron proliferation to alleviate autism symptoms through inhibition of JAK-STAT pathway by LEPR. Biosci. Rep. 2019;39(6): BSR20181904. DOI 10.1042/BSR20181904. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6591574.
88. Zovoilis A., Agbemenyah H.Y., Agis-Balboa R.C., Stilling R.M., Edbauer D., Rao P., Farinelli L., Delalle I., Schmitt A., Falkai P., Bahari-Javan S., Burkhardt S., Sananbenesi F., Fischer A. MicroRNA-34c is a novel target to treat dementias. EMBO J. 2011;30: 4299-4308. DOI 10.1038/emboj.2011.327. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3199394.