Evaluation of various RNA-seq approaches for identification of gene outrons in the flatworm Opisthorchis felineus
https://doi.org/10.18699/VJ20.688
Abstract
The parasitic flatworm Opisthorchis felineus is one of the causative agents of opisthorchiasis in humans. Recently, we assembled the O. felineus genome, but the correct genome annotation by means of standard methods was hampered by the presence of spliced leader trans-splicing (SLTS). As a result of SLTS, the original 5’-end (outron) of the transcripts is replaced by a short spliced leader sequence donated from a specialized SL RNA. SLTS is involved in the RNA processing of more than half of O. felineus genes, making it hard to determine the structure of outrons and bona fide transcription start sites of the corresponding genes and operons, being based solely on mRNA-seq data. In the current study, we tested various experimental approaches for identifying the sequences of outrons in O. felineus using massive parallel sequencing. Two of them were developed by us for targeted sequencing of already processed branched outrons. One was based on sequence-specific reverse transcription from the SL intron toward the 5’-end of the Y-branched outron. The other used outron hybridization with an immobilized single-stranded DNA probe complementary to the SL intron. Additionally, two approaches to the sequencing of rRNA-depleted total RNA were used, allowing the identification of a wider range of transcripts compared to mRNAseq. One is based on the enzymatic elimination of overrepresented cDNAs, the other utilizes exonucleolytic degradation of uncapped RNA by Terminator enzyme. By using the outron-targeting methods, we were not able to obtain the enrichment of RNA preparations by processed outrons, which is most likely indicative of a rapid turnover of these trans-splicing intermediate products. Of the two rRNA depletion methods, a method based on the enzymatic normalization of cDNA (Zymo-Seq RiboFree) showed high efficiency. Compared to mRNA-seq, it provides an approximately twofold increase in the fraction of reads originating from outrons and introns. The results suggest that unprocessed nascent transcripts are the main source of outron sequences in the RNA pool of O. felineus.
Keywords
About the Authors
N. I. ErshovRussian Federation
Novosibirsk
D. E. Maslov
Russian Federation
Novosibirsk
N. P. Bondar
Russian Federation
Novosibirsk
References
1. Beer S.A. Biology of the Agent of Opisthorchiasis. Moscow, 2005. (in Russian)
2. Bitton D.A., Rallis C., Jeffares D.C., Smith G.C., Chen Y.Y.C., Codlin S., Marguerat S., Bähler J. LaSSO, a strategy for genome-wide mapping of intronic lariats and branch points using RNA-seq. Genome Res. 2014;24(7):1169-1179. DOI 10.1101/gr.166819.113.
3. Boroni M., Sammeth M., Gava S.G., Jorge N.A.N., Macedo A.M., Machado C.R., Mourão M.M., Franco G.R. Landscape of the spliced leader trans-splicing mechanism in Schistosoma mansoni. Sci. Rep. 2018;8(1):3877. DOI 10.1038/s41598-018-22093-3.
4. Chen R.A.-J., Down T.A., Stempor P., Chen Q.B., Egelhofer T.A., Hillier L.W., Jeffers T.E., Ahringer J. The landscape of RNA polymerase II transcription initiation in C. elegans reveals promoter and enhancer architectures. Genome Res. 2013;23(8):1339-1347. DOI 10.1101/gr.153668.112.
5. Dobin A., Davis C.A., Schlesinger F., Drenkow J., Zaleski C., Jha S., Batut P., Chaisson M., Gingeras T.R. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15-21. DOI 10.1093/bioinformatics/bts635.
6. Döring J., Hurek T. Arm-specific cleavage and mutation during reverse transcription of 2′,5′-branched RNA by Moloney murine leukemia virus reverse transcriptase. Nucleic Acids Res. 2017;45(7):39673984. DOI 10.1093/nar/gkx073.
7. Ershov N.I. Evaluation of various RNA-seq approaches for identification of outrons in the flatworm Opisthorchis felineus (Version 1.0.0). Zenodo. 2020. DOI 10.5281/zenodo.3901531.
8. Ershov N.I., Mordvinov V.A., Prokhortchouk E.B., Pakharukova M.Y., Gunbin K.V., Ustyantsev K., Genaev M.A., Blinov A.G., Mazur A., Boulygina E., Tsygankova S., Khrameeva E., Chekanov N., Fan G., Xiao A., Zhang H., Xu X., Yang H., Solovyev V., Lee S.M., Liu X., Afonnikov D.A., Skryabin K.G. New insights from Opisthorchis felineus genome: update on genomics of the epidemiologically important liver flukes. BMC Genom. 2019;20(1):399. DOI 10.1186/s12864-019-5752-8.
9. FAO/WHO [Food and Agriculture Organization of the United Nations/ World Health Organization]. Multicriteria-Based Ranking for Risk Management of Food-Borne Parasites. Microbiological Risk Assessment Series. No. 23. Rome, 2014.
10. Fedorova O.S., Fedotova M.M., Sokolova T.S., Golovach E.A., Kovshirina Y.V., Ageeva T.S., Kovshirina A.E., Kobyakova O.S., Ogorodova L.M., Odermatt P. Opisthorchis felineus infection prevalence in Western Siberia: a review of Russian literature. Acta Trop. 2018; 178:196-204. DOI 10.1016/j.actatropica.2017.11.018.
11. Hannon G.J., Maroney P.A., Denker J.A., Nilsen T.W. Trans splicing of nematode pre-messenger RNA in vitro. Cell. 1990;61(7):1247-1255. DOI 10.1016/0092-8674(90)90689-c.
12. Ishikawa H. Evolution of ribosomal RNA. Comp. Biochem. Physiol. 1977;58(1):1-7. DOI 10.1016/0305-0491(77)90116-X.
13. Kruesi W.S., Core L.J., Waters C.T., Lis J.T., Meyer B.J. Condensin controls recruitment of RNA polymerase II to achieve nematode X-chromosome dosage compensation. eLife. 2013;2:e00808. DOI 10.7554/eLife.00808.
14. Lagesen K., Hallin P., Rødland E.A., Staerfeldt H.H., Rognes T., Ussery D.W. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007;35(9):3100-3108. DOI 10.1093/nar/gkm160.
15. Lasda E.L., Blumenthal T. Trans-splicing. Wiley Interdiscip. Rev. RNA. 2011;2(3):417-434. DOI 10.1002/wrna.71.
16. Liao Y., Smyth G.K., Shi W. The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res. 2019;47(8):e47. DOI 10.1093/nar/gkz114.
17. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17(1):10-12. DOI 10.14806/ej.17.1.200.
18. Murphy W.J., Watkins K.P., Agabian N. Identification of a novel Y branch structure as an intermediate in trypanosome mRNA processing: evidence for trans-splicing. Cell. 1986;47:517-525. DOI 10.1016/0092-8674(86)90616-1.
19. Nilsson D., Gunasekera K., Mani J., Osteras M., Farinelli L., Baerlocher L., Roditi I., Ochsenreiter T. Spliced leader trapping reveals widespread alternative splicing patterns in the highly dynamic transcriptome of Trypanosoma brucei. PLoS Pathog. 2010;6(8): e1001037. DOI 10.1371/journal.ppat.1001037.
20. Pakharukova M.Y., Mordvinov V.A. The liver fluke Opisthorchis felineus: biology, epidemiology, and carcinogenic potential. Trans. R. Soc. Trop. Med. Hyg. 2016;110:28-36. DOI 10.1093/trstmh/trv085.
21. Pakharukova M.Y., Zaparina O.G., Kapushchak Y.K., Baginskaya N.V., Mordvinov V.A. Opisthorchis felineus infection provokes time-dependent accumulation of oxidative hepatobiliary lesions in the injured hamster liver. PLoS One. 2019;14(5):e0216757. DOI 10.1371/journal.pone.0216757.
22. Saito T.L., Hashimoto S., Gu S.G., Morton J.J., Stadler M., Blumenthal T., Fire A., Morishita S. The transcription start site landscape of C. elegans. Genome Res. 2013;23(8):1348-1361. DOI 10.1101/gr.151571.112.
23. Sripa B., Kaewkes S., Sithithaworn P., Mairiang E., Laha T., Smout M., Pairojkul C., Bhudhisawasdi V., Tesana S., Thinkamrop B., Bethony J.M., Loukas A., Brindley P.J. Liver fluke induces cholangiocarcinoma. PLoS Med. 2007;4(7):e201. DOI 10.1371/journal.pmed.0040201.
24. Sutton R.E., Boothroyd J.C. Trypanosome trans-splicing utilizes 2′5′ branches and a corresponding debranching activity. EMBO J. 1988;7(5):1431-1437.