Тransplastomic tobacco plants producing the hydrophilic domain of the sheep pox virus coat protein L1R
https://doi.org/10.18699/VJ20.689
Abstract
Sheep pox has a wide geographical range of distribution and poses a threat to sheep breeding worldwide, as the disease is highly contagious and is accompanied by large economic losses. Vaccines based on live attenuated virus strains are currently being used for prevention of this disease. Such vaccines are effective, but potentially dangerous because of the possible virus reversion to a pathogenic state. The development of safe recombinant subunit vaccines against sheep pox is very relevant. The high ploidy level of the plant chloroplasts makes it possible to obtain large quantities of foreign proteins. The purpose of this study was to create transplastomic Nicotiana tabacum plants producing one of the candidate vaccine proteins of sheep pox virus L1R. A vector containing a deletion variant of the SPPV_56 gene, which encodes the N-terminal hydrophilic part of the viral coat protein L1R, was constructed to transform tobacco plastids. It provides integration of the transgene into the trnG/trnfM region of the chloroplast tobacco genome by homologous recombination. Spectinomycin-resistant tobacco lines were obtained by biolistic gun-mediated genetic transformation. PCR analysis in the presence of gene-specific primers confirmed integration of the transgene into the plant genome. Subsequent Northern and Western blot analysis showed the gene expression at the transcriptional and translational levels. The recombinant protein yields reached up to 0.9 % of total soluble protein. The transplastomic plants displayed a growth retardation and pale green leaf color compared to the wild type, but they developed normally and produced seeds. Southern blot analysis showed heteroplasmy of the plastids in the obtained plants due to recombination events between native and introduced regulatory plastid DNA elements. The recombinant protein from plant tissue was purified using metal affinity chromatography. Future research will be focused on determining the potential of the chloroplast-produced protein to induce neutralizing antibodies against SPPV strains.
Keywords
About the Authors
D. K. BeisenovKazakhstan
Almaty
G. E. Stanbekova
Kazakhstan
Almaty
B. K. Iskakov
Kazakhstan
Almaty
References
1. Beisenov D.K., Argimbaeva T.U., Stanbekova G.E., Iskakov B.K. Synthesis of the immunogenic domain of the L1R protein of sheep pox in rapeseed. Veterinariya, Zootekhniya i Biotekhnologiya = Veterinary, Zootechnics and Biotechnology. 2019;8:45-54. (in Russian)
2. Beisenov D., Stanbekova G., Nadirova L., Iskakov B. Sheep pox viral envelope protein L1RΔ synthesis in plants. Vestnik KazNU. Seriya Biologicheskaya = KazNU Bulletin. Biology series. 2014;60: 187- 190. (in Russian)
3. Bisht H., Weisberg A.S., Moss B. Vaccinia virus L1 protein is required for cell entry and membrane fusion. J. Virol. 2008;82:8687-8694. DOI 10.1128/JVI.00852-08.
4. Bock R. Engineering chloroplasts for high-level foreign protein expression. Methods Mol. Biol. 2014;1132:93-106. DOI 10.1007/978-1-62703-995-6_5.
5. Bradford M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of proteindye binding. Anal. Biochem. 1976;72:248-254.
6. Chervyakova O.V., Zaitsev V.L., Iskakov B.K., Tailakova E.T., Strochkov V.M., Sultankulova K.T., Sandybayev N.T., Stanbekova G.E., Beisenov D.K., Abduraimov Y.O., Mambetaliyev M., Sansyzbay A.R., Kovalskaya N.Y., Nemchinov L.G., Hammond R.W. Recombinant sheep pox virus proteins elicit neutralizing antibodies. Viruses. 2016;8:159-171. DOI 10.3390/v8060159.
7. Clarke J.L., Daniell H. Plastid biotechnology for crop production: present status and future perspectives. Plant Mol. Biol. 2011;77:203. DOI 10.1007/s11103-011-9767-z.
8. Daniell H., Rai V., Xiao Y. Cold chain and virus-free oral polio booster vaccine made in lettuce chloroplasts confers protection against all three poliovirus serotypes. Plant Biotechnol. J. 2019;17:1357-1368. DOI 10.1111/pbi.13060.
9. Demain A.L., Vaishnav P. Production of recombinant proteins by microbes and higher organisms. Biotechnol. Adv. 2009;27:297-306. DOI 10.1016/j.biotechadv.2009.01.008.
10. Finnegan J., McElroy D. Transgene inactivation: plants fight back! Nat. Biotechnol. 1994;12:883-887.
11. Gray B.N., Ahner B.A., Hanson M.R. Extensive homologous recombination between introduced and native regulatory plastid DNA elements in transplastomic plants. Transgenic Res. 2009;18:559-572. DOI 10.1007/s11248-009-9246-3.
12. Kurchenko F.P., Ivanyushchenkov V.N., Ufimtsev K.P. The effectiveness of dry culture vaccinia virus from the NISKHI strain against sheep pox. Veterinariya = Veterinary Medicine. 1991;10:21-24. (in Russian)
13. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680-685.
14. Lenzi P., Scotti N., Alagna F., Tornesello M.L., Pompa A., Vitale A., De Stradis A., Monti L., Grillo S., Buonaguro F.M., Maliga P., Cardi T. Translational fusion of chloroplast-expressed human papillomavirus type 16 L1 capsid protein enhances antigen accumulation in transplastomic tobacco. Transgenic Res. 2008;17:1091-1102. DOI 10.1007/s11248-008-9186-3.
15. McAleer W.J., Buynak E.B., Maigetter R.Z., Wampler D.E., Miller W.J., Hilleman M.R. Human hepatitis B vaccine from recombinant yeast. Nature. 1984;307:178-180. DOI 10.1038/307178a0.
16. McCabe M.S., Klaas M., Gonzalez-Rabade N., Poage M., BadilloCorona J.A., Zhou F., Karcher D., Bock R., Gray J.C., Dix P.H. Plastid transformation of high-biomass tobacco variety Maryland Mammoth for production of human immunodeficiency virus type 1 (HIV-1) p24 antigen. Plant Biotechnol. J. 2008;6:914-929. DOI 10.1111/j.1467-7652.2008.00365.x.
17. Murashige T., Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962;15:473- 497.
18. Oey M., Lohse M., Kreikemeyer B., Bock R. Exhaustion of the chloroplast protein synthesis capacity by massive expression of a highly stable protein antibiotic. Plant J. 2009;57:436-445. DOI 10.1111/j.1365-313X.2008.03702.x.
19. Rigano M.M., Manna C., Giulini A., Pedrazzini E., Capobianchi M., Castilletti C., Di Caro A., Ippolito G., Beggio P., De Giuli Morghen C., Monti L., Vitale A., Cardi T. Transgenic chloroplasts are efficient sites for high-yield production of the vaccinia virus envelope protein A27L in plant cells. Plant Biotechnol. J. 2009;7:577-591. DOI 10.1111/j.1467-7652.2009.00425.x.
20. Saba K., Gottschamel J., Younus I., Syed T., Gull K., Lössl A.G., Mirza B., Waheed M.T. Chloroplast-based inducible expression of ESAT-6 antigen for development of a plant-based vaccine against tuberculosis. J. Biotechnol. 2019;305:1-10. DOI 10.1016/j.jbiotec.2019.08.016.
21. Shchelkunov S.N., Konstantinov Yu.M., Deineko E.V. Transplastome plants. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2011;15(4):808-817. (in Russian)
22. Svab Z., Hajdukiewicz P., Maliga P. Stable transformation of plastids in higher plants. Proc. Natl. Acad. Sci. USA. 1990;87:8526-8530. DOI 10.1073/pnas.87.21.8526.
23. Tulman E.R., Afonso C.L., Lu Z., Zsak L., Sur J.H., Sandybaev N.T., Kerembekova U.Z., Zaitsev V.L., Kutish G.F., Rock D.L. The genomes of sheeppox and goatpox viruses. J. Virol. 2002;76:6054- 6061. DOI 10.1128/JVI.76.12.6054-6061.2002.
24. van Eerde A., Gottschamel J., Bock R., Hansen K.E.A., Munangándu H.M., Daniell H., Liu Clarke J. Production of tetravalent dengue virus envelope protein domain III based antigens in lettuce chloroplasts and immunologic analysis for future oral vaccine development. Plant Biotechnol. J. 2019;17:1408-1417. DOI 10.1111/pbi.13065.
25. Zhou F., Badillo-Corona J., Karcher D., Gonzalez-Rabade N., Piepenburg K., Borchers A.M., Maloney A.P., Kavanagh T.A., Gray J.C., Bock R. High-level expression of human immunodeficiency virus antigens from the tobacco and tomato plastid genomes. Plant Biotechnol. J. 2008;6:897-913. DOI 10.1111/j.1467-7652.2008.00356.x.
26. Zhou F., Karcher D., Bock R. Identification of a plastid intercistronic expression element (IEE) facilitating the expression of stable translatable monocistronic mRNAs from operons. Plant J. 2007;52:961- 972. DOI 10.1111/j.1365-313X.2007.03261.x.